Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a4, author = {Chen, Joanna N. and Kitaev, Sergey}, title = {On the {12-Representability} of {Induced} {Subgraphs} of a {Grid} {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {383--403}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a4/} }
TY - JOUR AU - Chen, Joanna N. AU - Kitaev, Sergey TI - On the 12-Representability of Induced Subgraphs of a Grid Graph JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 383 EP - 403 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a4/ LA - en ID - DMGT_2022_42_2_a4 ER -
Chen, Joanna N.; Kitaev, Sergey. On the 12-Representability of Induced Subgraphs of a Grid Graph. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 383-403. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a4/
[1] S.V. Gervacio, T.A. Rapanut and P.C.F. Ramos, Characterization and construction of permutation graphs, Open J. Discrete Math. 3 (2013) 33–38. https://doi.org/10.4236/ojdm.2013.31007
[2] M. Jones, S. Kitaev, A. Pyatkin and J. Remmel, Representing graphs via pattern avoiding words, Electron. J. Combin. 22 (2015) #P2.53. https://doi.org/10.37236/4946
[3] S. Kitaev, Existence of u-representation of graphs, J. Graph Theory 85 (2017) 661–668. https://doi.org/10.1002/jgt.22097
[4] S. Kitaev, A comprehensive introduction to the theory of word-representable graphs, in: Developments in Language Theory, DLT 2017, Lecture Notes in Comput. Sci. 10396, É. Charlier, J. Leroy and M. Rigo (Ed(s)), (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-62809-7_2
[5] S. Kitaev and V. Lozin, Words and Graphs (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-25859-1
[6] E. Lappas, S.D. Nikolopoulos and L. Palios, An O(n)-time algorithm for the paired-domination problem on permutation graphs, in: Combinatorial Algorithms, IWOCA 2009, Lectur Notes in Comput. Sci. 5874, J. Fiala, J. Kratochvíl and M. Miller (Ed(s)), (Springer, Berlin, Heidelberg, 2009). https://doi.org/10.1007/978-3-642-10217-2_36
[7] T. Nonner, Clique clustering yields a PTAS for max-coloring interval graphs, in: Automata, Languages and Programming, ICALP 2011, Lectur Notes in Comput. Sci. 6755, L. Aceto, M. Henzinger and J. Sgall (Ed(s)), (Springer, Berlin, Heidelberg, 2011) 183–194. https://doi.org/10.1007/978-3-642-22006-7_16
[8] H. Zarrabi-Zadeh, Online coloring co-interval graphs, Sci. Iran. Transactions D: Computer Science & Engineering and Electrical Engineering 16 (2009) 1–7.