Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a2, author = {Li, Xihe and Wang, Ligong}, title = {Gallai-Ramsey {Numbers} for {Rainbow} $S_3^+$ and {Monochromatic} {Paths}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {349--362}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a2/} }
TY - JOUR AU - Li, Xihe AU - Wang, Ligong TI - Gallai-Ramsey Numbers for Rainbow $S_3^+$ and Monochromatic Paths JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 349 EP - 362 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a2/ LA - en ID - DMGT_2022_42_2_a2 ER -
Li, Xihe; Wang, Ligong. Gallai-Ramsey Numbers for Rainbow $S_3^+$ and Monochromatic Paths. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 349-362. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a2/
[1] D. Bruce and Z.-X. Song, Gallai-Ramsey numbers of C7 with multiple colors, Discrete Math. 342 (2019) 1191–1194. https://doi.org/10.1016/j.disc.2019.01.003
[2] S.A. Burr, P. Erdős and J.H. Spencer, Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975) 87–99. https://doi.org/10.1090/S0002-9947-1975-0409255-0
[3] F.R.K. Chung and R. Graham, Edge-colored complete graphs with precisely colored subgraphs, Combinatorica 3–4 (1983) 315–324. https://doi.org/10.1007/BF02579187
[4] E.J. Cockayne and P.J. Lorimer, The Ramsey number for stripes, J. Aust. Math. Soc. 19 (1975) 252–256. https://doi.org/10.1017/S1446788700029554
[5] R.J. Faudree, R. Gould, M. Jacobson and C. Magnant, Ramsey numbers in rainbow triangle free colorings, Australas. J. Combin. 46 (2010) 269–284.
[6] R.J. Faudree and R.H. Schelp, Path-path Ramsey-type numbers for the complete bipartite graph, J. Combin. Theory Ser. B 19 (1975) 161–173. https://doi.org/10.1016/0095-8956(75)90081-7
[7] J. Fox, A. Grinshpun and J. Pach, The Erdős-Hajnal conjecture for rainbow triangles, J. Combin. Theory Ser. B 111 (2015) 75–125. https://doi.org/10.1016/j.jctb.2014.09.005
[8] S. Fujita and C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247–1254. https://doi.org/10.1016/j.disc.2009.11.004
[9] S. Fujita and C. Magnant, Extensions of Gallai-Ramsey results, J. Graph Theory 70 (2012) 404–426. https://doi.org/10.1002/jgt.20622
[10] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: A survey, Graphs Combin. 26 (2010) 1–30. https://doi.org/10.1007/s00373-010-0891-3
[11] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: A dynamic survey, Theory Appl. Graphs 0(1) (2014) Article 1. https://doi.org/10.20429/tag.2014.000101
[12] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25–66. https://doi.org/10.1007/BF02020961
[13] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167–170. https://doi.org/10.1007/BF01350150
[14] J. Gregory, Gallai-Ramsey Number of an 8-Cycle, Electronic Theses and Dissertations (Georgia Southern University, 2016).
[15] A. Gyárfás and G.N. Sárközy, A. Sebő and S. Selkow, Ramsey-type results for Gallai colorings, J. Graph Theory 64 (2010) 233–243. https://doi.org/10.1002/jgt.20452
[16] A. Gyárfás and G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211–216. https://doi.org/10.1002/jgt.20001
[17] M. Hall, C. Magnant, K. Ozeki and M. Tsugaki, Improved upper bounds for Gallai–Ramsey numbers of paths and cycles, J. Graph Theory 75 (2014) 59–74. https://doi.org/10.1002/jgt.21723
[18] X.H. Li and L.G. Wang, Monochromatic stars in rainbow K3-free and S3+-free colorings (2019), submitted.
[19] H. Liu, C. Magnant, A. Saito, I. Schiermeyer and Y.T. Shi, Gallai-Ramsey number for K4, J. Graph Theory (2019), in-press. https://doi.org/10.1002/jgt.22514
[20] C. Magnant and I. Schiermeyer, Gallai-Ramsey number for K5 (2019). arXiv:1901.03622
[21] M.W. Scobee, On the Ramsey number R(m1P3, m2P3, m3P3) and related results, a survey of classical and generalized Ramsey theory with a presentation of the three color Ramsey number for multiple copies of the path on three vertices, MA Thesis (University of Louisville, 1993).
[22] Y.S. Yang and P. Rowlinson, On the third Ramsey numbers of graphs with five edges, J. Combin. Math. Combin. Comput. 11 (1992) 213–222.