Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a18, author = {Chen, Hangdi and Lu, Changhong}, title = {Roman {{2}-Domination} {Problem} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {641--660}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a18/} }
Chen, Hangdi; Lu, Changhong. Roman {2}-Domination Problem in Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 641-660. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a18/
[1] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575–1586. https://doi.org/10.1137/070699688
[2] G.J. Chang, Algorithmic Aspects of Domination in Graphs (Handbook of Combinatorial Optimization, Kluwer Academic Pub., 1998).
[3] G.J. Chang, Total domination in block graphs, Oper. Res. Lett. 8 (1989) 53–57. https://doi.org/10.1016/0167-6377(89)90034-5
[4] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2}- domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013
[5] L. Chen, C. Lu and Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim. 19 (2010) 457–470. https://doi.org/10.1007/s10878-008-9177-6
[6] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
[7] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Acad. Press, New York, 1980).
[8] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564. https://doi.org/10.1016/j.dam.2016.09.035
[9] C.H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386–1391. https://doi.org/10.1016/j.disc.2011.12.021
[10] D. Pradhan and A. Jha, On computing a minimum secure dominating set in block graphs, J. Comb. Optim. 35 (2018) 613–631. https://doi.org/10.1007/s10878-017-0197-y
[11] A. Rahmouni and M. Chellali, Independent Roman {2} -domination in graphs, Discrete Appl. Math. 236 (2018) 408–414. https://doi.org/10.1016/j.dam.2017.10.028
[12] D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001).
[13] T.V. Wimer, Linear Algorithms on k -Terminal Graphs, PhD Thesis (Clemson University, 1987).
[14] G. Xu, L. Kang, E. Shan and M. Zhao, Power domination in block graphs, Theoret. Comput. Sci. 359 (2006) 299–305. https://doi.org/10.1016/j.tcs.2006.04.011