Roman {2}-Domination Problem in Graphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 641-660.

Voir la notice de l'article provenant de la source Library of Science

For a graph G = (V, E), a Roman 2-dominating function (R2DF) f : V → 0, 1, 2 has the property that for every vertex v ∈ V with f(v) = 0, either there exists a neighbor u ∈ N(v), with f(u) = 2, or at least two neighbors x, y ∈ N(v) having f(x) = f(y) = 1. The weight of an R2DF f is the sum f(V) = ∑v∈V f(v), and the minimum weight of an R2DF on G is the Roman 2-domination number γR2(G). An R2DF is independent if the set of vertices having positive function values is an independent set. The independent Roman 2-domination number iR2(G) is the minimum weight of an independent Roman 2-dominating function on G. In this paper, we show that the decision problem associated with γR2(G) is NP-complete even when restricted to split graphs. We design a linear time algorithm for computing the value of iR2(T) in any tree T, which answers an open problem raised by Rahmouni and Chellali [Independent Roman 2-domination in graphs, Discrete Appl. Math. 236 (2018) 408–414]. Moreover, we present a linear time algorithm for computing the value of γR2(G) in any block graph G, which is a generalization of trees.
Keywords: Roman {2}-domination, domination, algorithms
@article{DMGT_2022_42_2_a18,
     author = {Chen, Hangdi and Lu, Changhong},
     title = {Roman {{2}-Domination} {Problem} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {641--660},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a18/}
}
TY  - JOUR
AU  - Chen, Hangdi
AU  - Lu, Changhong
TI  - Roman {2}-Domination Problem in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 641
EP  - 660
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a18/
LA  - en
ID  - DMGT_2022_42_2_a18
ER  - 
%0 Journal Article
%A Chen, Hangdi
%A Lu, Changhong
%T Roman {2}-Domination Problem in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 641-660
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a18/
%G en
%F DMGT_2022_42_2_a18
Chen, Hangdi; Lu, Changhong. Roman {2}-Domination Problem in Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 641-660. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a18/

[1] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575–1586. https://doi.org/10.1137/070699688

[2] G.J. Chang, Algorithmic Aspects of Domination in Graphs (Handbook of Combinatorial Optimization, Kluwer Academic Pub., 1998).

[3] G.J. Chang, Total domination in block graphs, Oper. Res. Lett. 8 (1989) 53–57. https://doi.org/10.1016/0167-6377(89)90034-5

[4] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2}- domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013

[5] L. Chen, C. Lu and Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim. 19 (2010) 457–470. https://doi.org/10.1007/s10878-008-9177-6

[6] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004

[7] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Acad. Press, New York, 1980).

[8] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564. https://doi.org/10.1016/j.dam.2016.09.035

[9] C.H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386–1391. https://doi.org/10.1016/j.disc.2011.12.021

[10] D. Pradhan and A. Jha, On computing a minimum secure dominating set in block graphs, J. Comb. Optim. 35 (2018) 613–631. https://doi.org/10.1007/s10878-017-0197-y

[11] A. Rahmouni and M. Chellali, Independent Roman {2} -domination in graphs, Discrete Appl. Math. 236 (2018) 408–414. https://doi.org/10.1016/j.dam.2017.10.028

[12] D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001).

[13] T.V. Wimer, Linear Algorithms on k -Terminal Graphs, PhD Thesis (Clemson University, 1987).

[14] G. Xu, L. Kang, E. Shan and M. Zhao, Power domination in block graphs, Theoret. Comput. Sci. 359 (2006) 299–305. https://doi.org/10.1016/j.tcs.2006.04.011