A Classification of Cactus Graphs According to their Domination Number
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 613-626.

Voir la notice de l'article provenant de la source Library of Science

A set S of vertices in a graph G is a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number, γ(G), of G is the minimum cardinality of a dominating set of G. The authors proved in [A new lower bound on the domination number of a graph, J. Comb. Optim. 38 (2019) 721–738] that if G is a connected graph of order n ≥ 2 with k ≥ 0 cycles and ℓ leaves, then γ(G) ≥ ⌈(n − ℓ + 2 − 2k)/3⌉. As a consequence of the above bound, γ(G) = (n − ℓ + 2(1 − k) + m)/3 for some integer m ≥ 0. In this paper, we characterize the class of cactus graphs achieving equality here, thereby providing a classification of all cactus graphs according to their domination number.
Keywords: domination number, lower bounds, cycles, cactus graphs
@article{DMGT_2022_42_2_a16,
     author = {Hajian, Majid and Henning, Michael A. and Rad, Nader Jafari},
     title = {A {Classification} of {Cactus} {Graphs} {According} to their {Domination} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {613--626},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a16/}
}
TY  - JOUR
AU  - Hajian, Majid
AU  - Henning, Michael A.
AU  - Rad, Nader Jafari
TI  - A Classification of Cactus Graphs According to their Domination Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 613
EP  - 626
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a16/
LA  - en
ID  - DMGT_2022_42_2_a16
ER  - 
%0 Journal Article
%A Hajian, Majid
%A Henning, Michael A.
%A Rad, Nader Jafari
%T A Classification of Cactus Graphs According to their Domination Number
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 613-626
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a16/
%G en
%F DMGT_2022_42_2_a16
Hajian, Majid; Henning, Michael A.; Rad, Nader Jafari. A Classification of Cactus Graphs According to their Domination Number. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 613-626. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a16/

[1] Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62–71. https://doi.org/10.1016/j.ejc.2011.08.002

[2] E. DeLaViña, R. Pepper and W. Waller, A note on dominating sets and average distance, Discrete Math. 309 (2009) 2615–2619. https://doi.org/10.1016/j.disc.2008.03.018

[3] E. DeLaViña, R. Pepper and W. Waller, Lower bounds for the domination number, Discuss. Math. Graph Theory 30 (2010) 475–487. https://doi.org/10.7151/dmgt.1508

[4] R. Gera, T.W. Haynes, S.T. Hedetniemi and M.A. Henning, An annotated glossary of graph theory parameters, with conjectures, in: Graph Theory — Favorite Conjectures and Open Problems. 2, R. Gera. T.W. Haynes and S.T. Hedetniemi (Ed(s)), (Springer, Switzerland, 2018) 177–281.

[5] M. Hajian, M.A. Henning and N. Jafari Rad, A new lower bound on the domination number of a graph, J. Comb. Optim. 38 (2019) 721–738. https://doi.org/10.1007/s10878-019-00409-x

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[8] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013). https://doi.org/10.1007/978-1-4614-6525-6

[9] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24 (2004) 165–169. https://doi.org/10.7151/dmgt.1222