Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a16, author = {Hajian, Majid and Henning, Michael A. and Rad, Nader Jafari}, title = {A {Classification} of {Cactus} {Graphs} {According} to their {Domination} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {613--626}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a16/} }
TY - JOUR AU - Hajian, Majid AU - Henning, Michael A. AU - Rad, Nader Jafari TI - A Classification of Cactus Graphs According to their Domination Number JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 613 EP - 626 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a16/ LA - en ID - DMGT_2022_42_2_a16 ER -
%0 Journal Article %A Hajian, Majid %A Henning, Michael A. %A Rad, Nader Jafari %T A Classification of Cactus Graphs According to their Domination Number %J Discussiones Mathematicae. Graph Theory %D 2022 %P 613-626 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a16/ %G en %F DMGT_2022_42_2_a16
Hajian, Majid; Henning, Michael A.; Rad, Nader Jafari. A Classification of Cactus Graphs According to their Domination Number. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 613-626. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a16/
[1] Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62–71. https://doi.org/10.1016/j.ejc.2011.08.002
[2] E. DeLaViña, R. Pepper and W. Waller, A note on dominating sets and average distance, Discrete Math. 309 (2009) 2615–2619. https://doi.org/10.1016/j.disc.2008.03.018
[3] E. DeLaViña, R. Pepper and W. Waller, Lower bounds for the domination number, Discuss. Math. Graph Theory 30 (2010) 475–487. https://doi.org/10.7151/dmgt.1508
[4] R. Gera, T.W. Haynes, S.T. Hedetniemi and M.A. Henning, An annotated glossary of graph theory parameters, with conjectures, in: Graph Theory — Favorite Conjectures and Open Problems. 2, R. Gera. T.W. Haynes and S.T. Hedetniemi (Ed(s)), (Springer, Switzerland, 2018) 177–281.
[5] M. Hajian, M.A. Henning and N. Jafari Rad, A new lower bound on the domination number of a graph, J. Comb. Optim. 38 (2019) 721–738. https://doi.org/10.1007/s10878-019-00409-x
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
[8] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013). https://doi.org/10.1007/978-1-4614-6525-6
[9] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24 (2004) 165–169. https://doi.org/10.7151/dmgt.1222