Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a13, author = {Bre\v{s}ar, Bo\v{s}tjan and Ferme, Jasmina}, title = {Graphs that are {Critical} for the {Packing} {Chromatic} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {569--589}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a13/} }
TY - JOUR AU - Brešar, Boštjan AU - Ferme, Jasmina TI - Graphs that are Critical for the Packing Chromatic Number JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 569 EP - 589 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a13/ LA - en ID - DMGT_2022_42_2_a13 ER -
Brešar, Boštjan; Ferme, Jasmina. Graphs that are Critical for the Packing Chromatic Number. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 569-589. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a13/
[1] J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of cubic graphs, Discrete Math. 341 (2018) 474–483. https://doi.org/10.1016/j.disc.2017.09.014
[2] J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of subdivisions of cubic graphs, Graphs Combin. 35 (2019) 513–537. https://doi.org/10.1007/s00373-019-02016-3
[3] B. Brešar and J. Ferme, Packing coloring of Sierpiński-type graphs, Aequationes Math. 92 (2018) 1091–1118. https://doi.org/10.1007/s00010-018-0561-8
[4] B. Brešar and J. Ferme, An infinite family of subcubic graphs with unbounded packing chromatic number, Discrete Math. 341 (2018) 2337–2342. https://doi.org/10.1016/j.disc.2018.05.004
[5] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number under local changes in a graph, Discrete Math. 340 (2017) 1110–1115. https://doi.org/10.1016/j.disc.2016.09.030
[6] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number versus chromatic and clique number, Aequationes Math. 92 (2018) 497–513. https://doi.org/10.1007/s00010-017-0520-9
[7] J. Ekstein, P. Holub and O. Togni, The packing coloring of distance graphs D ( k, t ), Discrete Appl. Math. 167 (2014) 100–106. https://doi.org/10.1016/j.dam.2013.10.036
[8] J. Fiala and P.A. Golovach, Complexity of the packing coloring problem for trees, Discrete Appl. Math. 158 (2010) 771–778. https://doi.org/10.1016/j.dam.2008.09.001
[9] N. Gastineau, P. Holub and O. Togni, On the packing chromatic number of subcubic outerplanar graphs, Discrete Appl. Math. 255 (2019) 209–221. https://doi.org/10.1016/j.dam.2018.07.034
[10] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris and D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33–49.
[11] M. Kim, B. Lidický, T.Masařik and F. Pfender, Notes on complexity of packing coloring, Inform. Process. Lett. 137 (2018) 6–10. https://doi.org/10.1016/j.ipl.2018.04.012
[12] S. Klavžar and D.F. Rall, Packing chromatic vertex-critical graphs, Discrete Math. Theor. Comput. Sci. 21(3) (2019) #P8. https://doi.org/10.23638/DMTCS-21-3-8
[13] D. Korže and A. Vesel, ( d, n )- packing colorings of infinite lattices, Discrete Appl. Math. 237 (2018) 97–108. https://doi.org/10.1016/j.dam.2017.11.036
[14] D. Korže and A. Vesel, Packing coloring of generalized Sierpiński graphs, Discrete Math. Theor. Comput. Sci. 21 (2019) #P7. https://doi.org/10.23638/DMTCS-21-3-7
[15] B. Martin, F. Raimondi, T. Chen and J. Martin, The packing chromatic number of the infinite square lattice is between 13 and 15, Discrete Appl. Math. 225 (2017) 136–142. https://doi.org/10.1016/j.dam.2017.03.013
[16] D. Laïche and É. Sopena, Packing colouring of some classes of cubic graphs, Australas. J. Combin. 72 (2018) 376–404.
[17] D. Laïche, I. Bouchemakh and É. Sopena, Packing coloring of some undirected and oriented coronae graphs, Discuss. Math. Graph Theory 37 (2017) 665–690. https://doi.org/10.7151/dmgt.1963
[18] Z. Shao and A. Vesel, Modeling the packing coloring problem of graphs, Appl. Math. Model. 39 (2015) 3588–3595. https://doi.org/10.1016/j.apm.2014.11.060
[19] O. Togni, On packing colorings of distance graphs, Discrete Appl. Math. 167 (2014) 280–289. https://doi.org/10.1016/j.dam.2013.10.026
[20] P. Torres and M. Valencia-Pabon, The packing chromatic number of hypercubes, Discrete Appl. Math. 190–191 (2015) 127–140. https://doi.org/10.1016/j.dam.2015.04.006
[21] D.B. West, Introduction to Graph Theory (Prentice Hall, New York, 2001).