Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a11, author = {Batueva, Ts.Ch-D. and Borodin, O.V. and Ivanova, A.O. and Nikiforov, D.V.}, title = {Describing {Minor} {5-Stars} in {3-Polytopes} with {Minimum} {Degree} 5 and {No} {Vertices} of {Degree} 6 or 7}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {535--548}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a11/} }
TY - JOUR AU - Batueva, Ts.Ch-D. AU - Borodin, O.V. AU - Ivanova, A.O. AU - Nikiforov, D.V. TI - Describing Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree 6 or 7 JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 535 EP - 548 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a11/ LA - en ID - DMGT_2022_42_2_a11 ER -
%0 Journal Article %A Batueva, Ts.Ch-D. %A Borodin, O.V. %A Ivanova, A.O. %A Nikiforov, D.V. %T Describing Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree 6 or 7 %J Discussiones Mathematicae. Graph Theory %D 2022 %P 535-548 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a11/ %G en %F DMGT_2022_42_2_a11
Batueva, Ts.Ch-D.; Borodin, O.V.; Ivanova, A.O.; Nikiforov, D.V. Describing Minor 5-Stars in 3-Polytopes with Minimum Degree 5 and No Vertices of Degree 6 or 7. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 535-548. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a11/
[1] O.V. Borodin and A.O. Ivanova, Describing 4 -stars at 5 -vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710–1714. https://doi.org/10.1016/j.disc.2013.04.025
[2] O.V. Borodin and A.O. Ivanova, An analogue of Franklin’s Theorem, Discrete Math. 339 (2016) 2553–2556. https://doi.org/10.1016/j.disc.2016.04.019
[3] O.V. Borodin and A.O. Ivanova, Light and low 5 -stars in normal plane maps with minimum degree 5, Sib. Math. J. 57 (2016) 470–475. https://doi.org/10.1134/S0037446616030071
[4] O.V. Borodin and A.O. Ivanova, New results about the structure of plane graphs: a survey, AIP Conference Proceedings 1907 (2017) 030051. https://doi.org/10.1063/1.5012673
[5] O.V. Borodin and A.O. Ivanova, Low 5 -stars in normal plane maps with minimum degree 5, Discrete Math. 340 (2017) 18–22. https://doi.org/10.1016/j.disc.2016.07.013
[6] O.V. Borodin and A.O. Ivanova, On light neighborhoods of 5 -vertices in 3 -polytopes with minimum degree 5, Discrete Math. 340 (2017) 2234–2242. https://doi.org/10.1016/j.disc.2017.04.012
[7] O.V. Borodin, A.O. Ivanova and T.R. Jensen, 5 -stars of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 34 (2014) 539–546. https://doi.org/10.7151/dmgt.1748
[8] O.V. Borodin, A.O. Ivanova and O.N. Kazak, Describing neighborhoods of 5 -vertices in 3 -polytopes with minimum degree 5 and without vertices of degrees from 7 to 11, Discuss. Math. Graph Theory 38 (2018) 615–625. https://doi.org/10.7151/dmgt.2024
[9] O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil’eva, Heights of minor 5 -stars in 3 -polytopes with minimum degree 5 and no vertices of degree 6 and 7, Discrete Math. 341 (2018) 825–829. https://doi.org/10.1016/j.disc.2017.11.021
[10] O.V. Borodin, A.O. Ivanova and O.N. Kazak, Describing the neighborhood of 5 -stars in 3 -polytopes with minimum degree 5 and no vertices of degree from 6 to 8, Discrete Math. 342 (2019) 2439–2444. https://doi.org/10.1016/j.disc.2019.05.010
[11] O.V. Borodin and A.O. Ivanova, Light minor 5 -stars in 3 -polytopes with minimum degree 5, Sib. Math. J. 60 (2019) 272–278. https://doi.org/10.1134/S0037446619020071
[12] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light 5 -stars in 3 -polytopes with minimum degree 5 and restrictions on the degrees of major vertices, Sib. Math. J. 58 (2017) 600–605. https://doi.org/10.1134/S003744661704005X
[13] O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor 5 -stars in 3 -polytopes with minimum degree 5 and no 6 -vertices, Discrete Math. 340 (2017) 1612–1616. https://doi.org/10.1016/j.disc.2017.03.002
[14] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159–164. https://doi.org/10.7151/dmgt.1071
[15] B. Ferencová and T. Madaras, Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661–1675. https://doi.org/10.1016/j.disc.2009.11.027
[16] Ph. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225–236. https://doi.org/10.2307/2370527
[17] J. Harant and S. Jendrol’, On the existence of specific stars in planar graphs, Graphs Combin. 23 (2007) 529–543. https://doi.org/10.1007/s00373-007-0747-7
[18] A.O. Ivanova and D.V. Nikiforov, The structure of neighborhoods of 5 -vertices in plane triangulation with minimum degree 5, Math. Notes of Yakutsk State University 20 (2013) 66–78, in Russian.
[19] A.O. Ivanova and D.V. Nikiforov, Combinatorial structure of triangulated 3- polytopes with minimum degree 5, in: Proceedings of the Scientific Conference of Students, Graduate Students, and Young Researchers, XVII and XVIII Lavrent’ev’s Reading, Yakutsk; Kirov, (International Center for Research Projects, 2015) 22–27, in Russian.
[20] S. Jendrol’, A structural property of convex 3 -polytopes, Geom. Dedicata 68 (1997) 91–99. https://doi.org/10.1023/A:1004993723280
[21] S. Jendrol’ and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss, Math. Graph Theory 16 (1996) 207–217. https://doi.org/10.7151/dmgt.1035
[22] S. Jendrol’ and T. Madaras, Note on an existence of small degree vertices with at most one big degree neighbour in planar graphs, Tatra Mt. Math. Publ. 30 (2005) 149–153.
[23] S. Jendrol’ and H.-J. Voss, Light subgraphs of graphs embedded in the plane—A survey, Discrete Math. 313 (2013) 406–421. https://doi.org/10.1016/j.disc.2012.11.007
[24] H. Lebesgue, Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19 (1940) 27–43.
[25] Y. Li, M. Rao and T. Wang, Minor stars in plane graphs with minimum degree five, Discrete Appl. Math. 257 (2019) 233–242. https://doi.org/10.1016/j.dam.2018.10.019
[26] D.V. Nikiforov, The structure of neighborhoods of normal plane maps with minimum degree 5, Math. Notes of North-Eastern Federal University 23 (2016) 56–66, in Russian.
[27] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426. https://doi.org/10.1007/BF01444968