Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a10, author = {Andres, Stephan Dominique and Charpentier, Cl\'ement and Fong, Wai Lam}, title = {Game-Perfect {Semiorientations} of {Forests}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {501--534}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a10/} }
TY - JOUR AU - Andres, Stephan Dominique AU - Charpentier, Clément AU - Fong, Wai Lam TI - Game-Perfect Semiorientations of Forests JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 501 EP - 534 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a10/ LA - en ID - DMGT_2022_42_2_a10 ER -
Andres, Stephan Dominique; Charpentier, Clément; Fong, Wai Lam. Game-Perfect Semiorientations of Forests. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 501-534. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a10/
[1] S.D. Andres, Lightness of digraphs in surfaces and directed game chromatic number, Discrete Math. 309 (2009) 3564–3579. https://doi.org/10.1016/j.disc.2007.12.060
[2] S.D. Andres, Asymmetric directed graph coloring games, Discrete Math. 309 (2009) 5799–5802. https://doi.org/10.1016/j.disc.2008.03.022
[3] S.D. Andres, Game-perfect graphs, Math. Methods Oper. Res. 69 (2009) 235–250. https://doi.org/10.1007/s00186-008-0256-3
[4] S.D. Andres, On characterizing game-perfect graphs by forbidden induced subgraphs, Contrib. Discrete Math. 7 (2012) 21–34. https://doi.org/10.11575/cdm.v7i1.62115
[5] S.D. Andres, Game-perfect digraphs, Math. Methods Oper. Res. 76 (2012) 321–341. https://doi.org/10.1007/s00186-012-0401-x
[6] S.D. Andres, On kernels in strongly game-perfect digraphs and a characterisation of weakly game-perfect digraphs, AKCE Int. J. Graphs Comb. 17 (2020) 539–549. https://doi.org/10.1016/j.akcej.2019.03.020
[7] S.D. Andres and W. Hochstättler, Perfect digraphs, J. Graph Theory 79 (2015) 21–29. https://doi.org/10.1002/jgt.21811
[8] S.D. Andres and E. Lock, Characterising and recognising game-perfect graphs, Discrete Math. Theor. Comput. Sci. 21 (2019) #6.
[9] J. Bang-Jensen and G.Z. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2008). https://doi.org/10.1007/978-1-84800-998-1
[10] H.L. Bodlaender, On the complexity of some coloring games, Internat. J. Found. Comput. Sci. 2 (1991) 133–147. https://doi.org/10.1142/S0129054191000091
[11] E. Boros and V. Gurvich, Perfect graphs are kernel solvable, Discrete Math. 159 (1996) 35–55. https://doi.org/10.1016/0012-365X(95)00096-F
[12] W.H. Chan, W.C. Shiu, P.K. Sun and X. Zhu, The strong game colouring number of directed graphs, Discrete Math. 313 (2013) 1070–1077. https://doi.org/10.1016/j.disc.2013.02.001
[13] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. of Math. (2) 164 (2006) 51–229. https://doi.org/10.4007/annals.2006.164.51
[14] U. Faigle, W. Kern, H. Kierstead and W.T. Trotter, On the game chromatic number of some classes of graphs, Ars Combin. 35 (1993) 143–150.
[15] M. Gardner, Mathematical games, Scientific American 244 (April, 1981) 23–26. https://doi.org/10.1038/scientificamerican0481-18
[16] Y. Guo and M. Surmacs, Miscellaneous digraph classes, in: Classes of Directed Graphs, J. Bang-Jensen, G. Gutin (Ed(s)), (Springer, Berlin, 2018) 517–574. https://doi.org/10.1007/978-3-319-71840-8_11
[17] E. Lock, The Structure of gB -Perfect Graphs (Bachelor’s Thesis FernUniversität, Hagen, 2016).
[18] V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory Ser. B 33 (1982) 265–270. https://doi.org/10.1016/0095-8956(82)90046-6
[19] Zs. Tuza and X. Zhu, Colouring games, in: Topics in Chromatic Graph Theory, L.W. Beineke and R.J. Wilson (Ed(s)), (Encyclopedia Math. Appl. 156 Cambridge Univ. Press, Cambridge, 2015) 304–326. https://doi.org/10.1017/CBO9781139519797.017
[20] D. Yang and X. Zhu, Game colouring directed graphs, Electron. J. Combin. 17 (2010) #R11. https://doi.org/10.37236/283
[21] X. Zhu, The game coloring number of planar graphs, J. Combin. Theory Ser. B 75 (1999) 245–258. https://doi.org/10.1006/jctb.1998.1878