Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_1_a9, author = {Klein, Douglas J. and Rodr{\'\i}guez-Vel\'azquez, Juan A.}, title = {Protection of {Lexicographic} {Product} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {139--158}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a9/} }
TY - JOUR AU - Klein, Douglas J. AU - Rodríguez-Velázquez, Juan A. TI - Protection of Lexicographic Product Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 139 EP - 158 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a9/ LA - en ID - DMGT_2022_42_1_a9 ER -
Klein, Douglas J.; Rodríguez-Velázquez, Juan A. Protection of Lexicographic Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 139-158. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a9/
[1] B.H. Arriola and S.R. Canoy, Jr., Doubly connected domination in the corona and lexicographic product of graphs, Appl. Math. Sci. 8 (2014) 1521–1533. https://doi.org/10.12988/ams.2014.4136
[2] B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) 241–249. https://doi.org/10.1002/jgt.3190030306
[3] H. Boumediene Merouane and M. Chellali, On secure domination in graphs, Inform. Process. Lett. 115 (2015) 786–790. https://doi.org/10.1016/j.ipl.2015.05.006
[4] A.P. Burger, M.A. Henning and J.H. van Vuuren, Vertex covers and secure domination in graphs, Quaest. Math. 31 (2008) 163–171. https://doi.org/10.2989/QM.2008.31.2.5.477
[5] A. Cabrera Martínez, L.P. Montejano and J.A. Rodríguez-Velázquez, Total weak Roman domination in graphs, Symmetry 11 (6) (2019) #831. https://doi.org/10.3390/sym11060831
[6] M. Chellali, T.W. Haynes and S.T. Hedetniemi, Bounds on weak Roman and 2- rainbow domination numbers, Discrete Appl. Math. 178 (2014) 27–32. https://doi.org/10.1016/j.dam.2014.06.016
[7] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219. https://doi.org/10.1002/net.3230100304
[8] E.J. Cockayne, O. Favaron and C.M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39 (2003) 87–100.
[9] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19–32.
[10] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
[11] M. Dettla, M. Lemańska, J.A. Rodríguez-Velázquez and R. Zuazua, On the super domination number of lexicographic product graphs, Discrete Appl. Math. 263 (2019) 118–129. https://doi.org/10.1016/j.dam.2018.03.082
[12] W. Goddard and M.A. Henning, Domination in planar graphs with small diameter, J. Graph Theory 40 (2002) 1–25. https://doi.org/10.1002/jgt.10027
[13] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs (CRC Press, 2011). https://doi.org/10.1201/b10959
[14] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Volume 2: Advanced Topics (CRC Press, New York, 1998).
[15] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (CRC Press, New York, 1998).
[16] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire—A new strategy, Discrete Math. 266 (2003) 239–251. https://doi.org/10.1016/S0012-365X(02)00811-7
[17] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-6525-6
[18] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).
[19] W.F. Klostermeyer and C.M. Mynhardt, Secure domination and secure total domination in graphs, Discuss. Math. Graph Theory 28 (2008) 267–284. https://doi.org/10.7151/dmgt.1405
[20] J. Liu, X. Zhang and J. Meng, Domination in lexicographic product digraphs, Ars Combin. 120 (2015) 23–32.
[21] R.J. Nowakowski and D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53–79. https://doi.org/10.7151/dmgt.1023
[22] I. Stewart, Defend the Roman Empire !, Sci. Amer. 281 (1999) 136–138. https://doi.org/10.1038/scientificamerican1299-136
[23] T.K. Šumenjak, P. Pavlič and A. Tepeh, On the Roman domination in the lexicographic product of graphs, Discrete Appl. Math. 160 (2012) 2030–2036. https://doi.org/10.1016/j.dam.2012.04.008
[24] T.K. Šumenjak, D.F. Rall and A. Tepeh, Rainbow domination in the lexicographic product of graphs, Discrete Appl. Math. 161 (2013) 2133–2141. https://doi.org/10.1016/j.dam.2013.03.011
[25] M. Valveny, H. Pérez-Rosés and J.A. Rodríguez-Velázquez, On the weak Roman domination number of lexicographic product graphs, Discrete Appl. Math. 263 (2019) 257–270. https://doi.org/10.1016/j.dam.2018.03.039
[26] M. Valveny and J.A. Rodríguez-Velázquez, Protection of graphs with emphasis on Cartesian product graphs, Filomat 33 (2019) 319–333. https://doi.org/10.2298/FIL1901319V