Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_1_a8, author = {Bokal, Drago and Jerebic, Janja}, title = {Guarding a {Subgraph} as a {Tool} in {Pursuit-Evasion} {Games}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {123--138}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a8/} }
TY - JOUR AU - Bokal, Drago AU - Jerebic, Janja TI - Guarding a Subgraph as a Tool in Pursuit-Evasion Games JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 123 EP - 138 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a8/ LA - en ID - DMGT_2022_42_1_a8 ER -
Bokal, Drago; Jerebic, Janja. Guarding a Subgraph as a Tool in Pursuit-Evasion Games. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 123-138. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a8/
[1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math. 8 (1984) 1–12. https://doi.org/10.1016/0166-218X(84)90073-8
[2] B. Alspach, Searching and sweeping graphs: A brief survey, Matematiche (Catania) 59 (2004) 5–37.
[3] T. Andreae, On a pursuit game played on graphs for which a minor is excluded, J. Combin. Theory Ser. B 41 (1986) 37–47. https://doi.org/10.1016/0095-8956(86)90026-2
[4] A. Bonato and B. Yang, Graph searching and related problems, in: Handbook of Combinatorial Optimization, (Springer, New York, 2013) 1511–1558. https://doi.org/10.1007/978-1-4419-7997-1_76
[5] E. Chiniforooshan, A better bound for the cop number of general graphs, J. Graph Theory 58 (2008) 45–48. https://doi.org/10.1002/jgt.20291
[6] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19–32.
[7] T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory Ser. B 72 (1998) 236–250. https://doi.org/10.1006/jctb.1997.1812
[8] F.V. Fomin, P.A. Golovach, A. Hall, M. Mihalák, E. Vicari and P. Widmayer, How to guard a graph?, Algorithmica 61 (2011) 839–856. https://doi.org/10.1007/s00453-009-9382-4
[9] F.V. Fomin, P.A. Golovach and D. Lokshtanov, Guard games on graphs: Keep the intruder out, Theoret. Comput. Sci. 412 (2011) 6484–6497. https://doi.org/10.1016/j.tcs.2011.08.024
[10] G. Hahn and G. MacGillivray, A note on k-cop, l-robber games on graphs, Discrete Math. 306 (2006) 2492–2497. https://doi.org/10.1016/j.disc.2005.12.038
[11] H. Nagamochi, Cop-robber guarding game with cycle robber region, in: 3rd International Workshop on Frontiers in Algorithmics, Lecture Notes in Comput. Sci. 5598, (Springer-Verlag, Berlin, 2009) 74–84.
[12] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math. 43 (1983) 235–239. https://doi.org/10.1016/0012-365X(83)90160-7
[13] A. Quilliot, A short note about pursuit games played on a graph with a given genus, J. Combin. Theory Ser. B 38 (1985) 89–92. https://doi.org/10.1016/0095-8956(85)90093-0
[14] T.D. Parsons, Pursuit-evasion in a graph, in: Theory and Applications of Graphs, Y. Alavi and D.R. Lick (Ed(s)), (Lecture Notes in Math. 642, Springer-Verlag, Berlin) 1978. 426–441 https://doi.org/10.1007/BFb0070400
[15] T. Reddy, S. Krishna and P. Rangan, The guarding problem—complexity and approximation, in: Proceedings of IWOCA, 2009, J. Fiala, J. Kratochvíl and M. Miller (Ed(s)), (Lecture Notes in Comput. Sci. 5874, 2009) 460–470. https://doi.org/10.1007/978-3-642-102217-2−45
[16] B. Schröder, The cop number of a graph is bounded by ⌊ 32genus(G) ⌋ + 3, in: Categorical Perspectives, Trends Math., (Birkhäuser, Boston, 2001) 243–263. https://doi.org/10.1007/978-1-4612-1370-3_14
[17] R. Šámal, R. Stolař and T. Valla, Complexity of the cop and robber guarding game, in: Proceedings of IWOCA 2011, (Lecture Notes in Comput. Sci. 7056, 2011) 361–373. https://doi.org/10.1007/978-3-642-25011-8_29
[18] R. Šámal and T. Valla, The guarding game is E-complete, Theoret. Comput. Sci. 521 (2014) 92–106. https://doi.org/10.1016/j.tcs.2013.11.034