Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 101-121.

Voir la notice de l'article provenant de la source Library of Science

We establish a set of recursion relations for the coefficients in the chromatic polynomial of a graph or a hypergraph. As an application we provide a generalization of Whitney’s broken cycle theorem for hypergraphs, as well as deriving an explicit formula for the linear coefficient of the chromatic polynomial of the r-complete hypergraph in terms of roots of the Taylor polynomials for the exponential function.
Keywords: chromatic polynomials, hypergraphs, broken cycles
@article{DMGT_2022_42_1_a7,
     author = {Durhuus, Bergfinnur and Lucia, Angelo},
     title = {Recursion {Relations} for {Chromatic} {Coefficients} for {Graphs} and {Hypergraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {101--121},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/}
}
TY  - JOUR
AU  - Durhuus, Bergfinnur
AU  - Lucia, Angelo
TI  - Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 101
EP  - 121
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/
LA  - en
ID  - DMGT_2022_42_1_a7
ER  - 
%0 Journal Article
%A Durhuus, Bergfinnur
%A Lucia, Angelo
%T Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 101-121
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/
%G en
%F DMGT_2022_42_1_a7
Durhuus, Bergfinnur; Lucia, Angelo. Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 101-121. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/

[1] C. Berge, Hypergraphs (North Holland, Amsterdam, 1989).

[2] G.D. Birkho, A determinant formula for the number of ways of coloring a map, Ann. of Math. (2) 14 (1912–1913) 42–46. https://doi.org/10.2307/1967597

[3] A. Blass and B.E. Sagan, Bijective proofs of two broken circuit theorems, J. Graph Theory 10 (1986) 15–21. https://doi.org/10.1002/jgt.3190100104

[4] J.D. Buckholtz, A characterization of the exponential series, Amer. Math. Monthly 73 (1966) 121–123. https://doi.org/10.2307/2313761 https://doi.org/10.1080/00029890.1966.11970928

[5] Cs. Bujtás, Zs. Tuza and V.I. Voloshin, Hypergraph colouring, in: Topics in Chromatic Graph Theory, L.W. Beineke and R.J. Wilson (Ed(s)), (Cambridge University Press, Cambridge, 2015) 230–254. https://doi.org/10.1017/CBO9781139519793.014

[6] B. Conrey and A. Ghosh, On the zeros of the Taylor polynomials associated with the exponential function, Amer. Math. Monthly 95 (1988) 528–533. https://doi.org/10.2307/2322757

[7] J. Dieudonné, Sur les zéros des polynomes-sections de ex, Bull. Sci. Math. 70 (1935) 333–351.

[8] K. Dohmen, A Broken-Circuits-Theorem for hypergraphs, Arch. Math. (Basel) 64 (1995) 159–162. https://doi.org/10.1007/BF01196637

[9] K. Dohmen, An improvement of the inclusion-exclusion principle, Arch. Math. (Basel) 72 (1999) 298–303. https://doi.org/10.1007/s000130050336

[10] K. Dohmen, An inductive proof of Whitney’s broken circuit theorem, Discuss. Math. Graph Theory 31 (2011) 577–586. https://doi.org/10.7151/dmgt.1561

[11] K. Dohmen and M. Trinks, An abstraction of Whitney’s Broken Circuit Theorem, Electron. J. Combin. 21 (4) (2014) #P4.32. https://doi.org/10.37236/4356

[12] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs (World Scientific, 2005). https://doi.org/10.1142/5814

[13] S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction (Cambridge University Press, Cambridge, 2017). https://doi.org/10.1017/9781316882603

[14] J. Huh, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, J. Amer. Math. Soc. 25 (2012) 907–927. https://doi.org/10.1090/S0894-0347-2012-00731-0

[15] D.J. Newman and T.J. Rivlin, The zeros of the partial sums of the exponential function, J. Approx. Theory 5 (1972) 405–412. https://doi.org/10.1016/0021-9045(72)90007-X

[16] D.J. Newman and T.J. Rivlin, Correction: The zeros of the partial sums of the exponential function, J. Approx. Theory 16 (1976) 299–300. https://doi.org/10.1016/0021-9045(76)90061-7

[17] C.E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta 64 (1991) 953–1054.

[18] I.E. Pritsker and R.S. Varga, The Szegö curve, zero distribution, and weighted approximation, Trans. Amer. Math. Soc. 349 (1997) 4085–4105. https://doi.org/10.1090/S0002-9947-97-01889-8

[19] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52–71. https://doi.org/10.1016/S0021-9800(68)80087-0

[20] A.D. Scott and A.D. Sokal, The repulsive lattice gas, the independent-set polynomial, and the Lovász Local Lemma, J. Stat. Phys. 118 (2005) 1151–1261. https://doi.org/10.1007/s10955-004-2055-4

[21] G. Szegö, Über eine Eigenschaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges. 23 (1924) 50–64.

[22] M. Trinks, A note on a broken-cycle theorem for hypergraphs, Discuss. Math. Graph Theory 34 (2014) 641–646. https://doi.org/10.7151/dmgt.1734

[23] D. Ueltschi, Cluster expansions and correlation functions, Mosc. Math. J. 4 (2004) 511–522. https://doi.org/10.17323/1609-4514-2004-4-2-511-522

[24] R.S. Varga, A.J. Carpenter and B.W. Lewis, The dynamical motion of the zeros of the partial sums of e z, and its relationship to discrepancy theory, Electron. Trans. Numer. Anal. 30 (2008) 128–143.

[25] V.I. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova 1 (1993) 45–52.

[26] P. Walker, The zeros of the partial sums of the exponential series, Amer. Math. Monthly 110 (2003) 337–339. https://doi.org/10.1080/00029890.2003.11919971

[27] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. (N.S.) 38 (1932) 572–579. https://doi.org/10.1090/S0002-9904-1932-05460-X

[28] S.M. Zemyan, On the zeroes of the nth partial sum of the exponential series, Amer. Math. Monthly 112 (2005) 891–909. https://doi.org/10.2307/30037629

[29] A.A. Zykov, Hypergraphs, Russian Math. Surveys 29 (1974) 89–156. https://doi.org/10.1070/RM1974v029n06ABEH001303