Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_1_a7, author = {Durhuus, Bergfinnur and Lucia, Angelo}, title = {Recursion {Relations} for {Chromatic} {Coefficients} for {Graphs} and {Hypergraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {101--121}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/} }
TY - JOUR AU - Durhuus, Bergfinnur AU - Lucia, Angelo TI - Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 101 EP - 121 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/ LA - en ID - DMGT_2022_42_1_a7 ER -
%0 Journal Article %A Durhuus, Bergfinnur %A Lucia, Angelo %T Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs %J Discussiones Mathematicae. Graph Theory %D 2022 %P 101-121 %V 42 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/ %G en %F DMGT_2022_42_1_a7
Durhuus, Bergfinnur; Lucia, Angelo. Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 101-121. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/
[1] C. Berge, Hypergraphs (North Holland, Amsterdam, 1989).
[2] G.D. Birkho, A determinant formula for the number of ways of coloring a map, Ann. of Math. (2) 14 (1912–1913) 42–46. https://doi.org/10.2307/1967597
[3] A. Blass and B.E. Sagan, Bijective proofs of two broken circuit theorems, J. Graph Theory 10 (1986) 15–21. https://doi.org/10.1002/jgt.3190100104
[4] J.D. Buckholtz, A characterization of the exponential series, Amer. Math. Monthly 73 (1966) 121–123. https://doi.org/10.2307/2313761 https://doi.org/10.1080/00029890.1966.11970928
[5] Cs. Bujtás, Zs. Tuza and V.I. Voloshin, Hypergraph colouring, in: Topics in Chromatic Graph Theory, L.W. Beineke and R.J. Wilson (Ed(s)), (Cambridge University Press, Cambridge, 2015) 230–254. https://doi.org/10.1017/CBO9781139519793.014
[6] B. Conrey and A. Ghosh, On the zeros of the Taylor polynomials associated with the exponential function, Amer. Math. Monthly 95 (1988) 528–533. https://doi.org/10.2307/2322757
[7] J. Dieudonné, Sur les zéros des polynomes-sections de ex, Bull. Sci. Math. 70 (1935) 333–351.
[8] K. Dohmen, A Broken-Circuits-Theorem for hypergraphs, Arch. Math. (Basel) 64 (1995) 159–162. https://doi.org/10.1007/BF01196637
[9] K. Dohmen, An improvement of the inclusion-exclusion principle, Arch. Math. (Basel) 72 (1999) 298–303. https://doi.org/10.1007/s000130050336
[10] K. Dohmen, An inductive proof of Whitney’s broken circuit theorem, Discuss. Math. Graph Theory 31 (2011) 577–586. https://doi.org/10.7151/dmgt.1561
[11] K. Dohmen and M. Trinks, An abstraction of Whitney’s Broken Circuit Theorem, Electron. J. Combin. 21 (4) (2014) #P4.32. https://doi.org/10.37236/4356
[12] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs (World Scientific, 2005). https://doi.org/10.1142/5814
[13] S. Friedli and Y. Velenik, Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction (Cambridge University Press, Cambridge, 2017). https://doi.org/10.1017/9781316882603
[14] J. Huh, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, J. Amer. Math. Soc. 25 (2012) 907–927. https://doi.org/10.1090/S0894-0347-2012-00731-0
[15] D.J. Newman and T.J. Rivlin, The zeros of the partial sums of the exponential function, J. Approx. Theory 5 (1972) 405–412. https://doi.org/10.1016/0021-9045(72)90007-X
[16] D.J. Newman and T.J. Rivlin, Correction: The zeros of the partial sums of the exponential function, J. Approx. Theory 16 (1976) 299–300. https://doi.org/10.1016/0021-9045(76)90061-7
[17] C.E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Acta 64 (1991) 953–1054.
[18] I.E. Pritsker and R.S. Varga, The Szegö curve, zero distribution, and weighted approximation, Trans. Amer. Math. Soc. 349 (1997) 4085–4105. https://doi.org/10.1090/S0002-9947-97-01889-8
[19] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52–71. https://doi.org/10.1016/S0021-9800(68)80087-0
[20] A.D. Scott and A.D. Sokal, The repulsive lattice gas, the independent-set polynomial, and the Lovász Local Lemma, J. Stat. Phys. 118 (2005) 1151–1261. https://doi.org/10.1007/s10955-004-2055-4
[21] G. Szegö, Über eine Eigenschaft der Exponentialreihe, Sitzungsber. Berl. Math. Ges. 23 (1924) 50–64.
[22] M. Trinks, A note on a broken-cycle theorem for hypergraphs, Discuss. Math. Graph Theory 34 (2014) 641–646. https://doi.org/10.7151/dmgt.1734
[23] D. Ueltschi, Cluster expansions and correlation functions, Mosc. Math. J. 4 (2004) 511–522. https://doi.org/10.17323/1609-4514-2004-4-2-511-522
[24] R.S. Varga, A.J. Carpenter and B.W. Lewis, The dynamical motion of the zeros of the partial sums of e z, and its relationship to discrepancy theory, Electron. Trans. Numer. Anal. 30 (2008) 128–143.
[25] V.I. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova 1 (1993) 45–52.
[26] P. Walker, The zeros of the partial sums of the exponential series, Amer. Math. Monthly 110 (2003) 337–339. https://doi.org/10.1080/00029890.2003.11919971
[27] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. (N.S.) 38 (1932) 572–579. https://doi.org/10.1090/S0002-9904-1932-05460-X
[28] S.M. Zemyan, On the zeroes of the nth partial sum of the exponential series, Amer. Math. Monthly 112 (2005) 891–909. https://doi.org/10.2307/30037629
[29] A.A. Zykov, Hypergraphs, Russian Math. Surveys 29 (1974) 89–156. https://doi.org/10.1070/RM1974v029n06ABEH001303