Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 101-121

Voir la notice de l'article provenant de la source Library of Science

We establish a set of recursion relations for the coefficients in the chromatic polynomial of a graph or a hypergraph. As an application we provide a generalization of Whitney’s broken cycle theorem for hypergraphs, as well as deriving an explicit formula for the linear coefficient of the chromatic polynomial of the r-complete hypergraph in terms of roots of the Taylor polynomials for the exponential function.
Keywords: chromatic polynomials, hypergraphs, broken cycles
@article{DMGT_2022_42_1_a7,
     author = {Durhuus, Bergfinnur and Lucia, Angelo},
     title = {Recursion {Relations} for {Chromatic} {Coefficients} for {Graphs} and {Hypergraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {101--121},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/}
}
TY  - JOUR
AU  - Durhuus, Bergfinnur
AU  - Lucia, Angelo
TI  - Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 101
EP  - 121
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/
LA  - en
ID  - DMGT_2022_42_1_a7
ER  - 
%0 Journal Article
%A Durhuus, Bergfinnur
%A Lucia, Angelo
%T Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 101-121
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/
%G en
%F DMGT_2022_42_1_a7
Durhuus, Bergfinnur; Lucia, Angelo. Recursion Relations for Chromatic Coefficients for Graphs and Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 101-121. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a7/