Minimum Coverings of Crowns with Cycles and Stars
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 81-88

Voir la notice de l'article provenant de la source Library of Science

Let F, G and H be graphs. A (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. For R ⊆ F, a (G, H)-covering of F with padding R is a (G, H)-decomposition of F + E(R). A (G, H)-covering of F with the smallest cardinality is a minimum (G, H)-covering. This paper gives the solution of finding the minimum (Ck, Sk)-covering of the crown Cn,n−1.
Keywords: cycle, star, covering, decomposition, crown
@article{DMGT_2022_42_1_a5,
     author = {Lin, Jenq-Jong and Jou, Min-Jen},
     title = {Minimum {Coverings} of {Crowns} with {Cycles} and {Stars}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a5/}
}
TY  - JOUR
AU  - Lin, Jenq-Jong
AU  - Jou, Min-Jen
TI  - Minimum Coverings of Crowns with Cycles and Stars
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 81
EP  - 88
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a5/
LA  - en
ID  - DMGT_2022_42_1_a5
ER  - 
%0 Journal Article
%A Lin, Jenq-Jong
%A Jou, Min-Jen
%T Minimum Coverings of Crowns with Cycles and Stars
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 81-88
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a5/
%G en
%F DMGT_2022_42_1_a5
Lin, Jenq-Jong; Jou, Min-Jen. Minimum Coverings of Crowns with Cycles and Stars. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 81-88. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a5/