Bounds on Watching and Watching Graph Products
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 63-79.

Voir la notice de l'article provenant de la source Library of Science

A watchman’s walk for a graph G is a minimum-length closed dominating walk, and the length of such a walk is denoted (G). We introduce several lower bounds for such walks, and apply them to determine the length of watchman’s walks in several grids.
Keywords: watchman’s walk, domination, graph products
@article{DMGT_2022_42_1_a4,
     author = {Dyer, Danny and Howell, Jared},
     title = {Bounds on {Watching} and {Watching} {Graph} {Products}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {63--79},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a4/}
}
TY  - JOUR
AU  - Dyer, Danny
AU  - Howell, Jared
TI  - Bounds on Watching and Watching Graph Products
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 63
EP  - 79
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a4/
LA  - en
ID  - DMGT_2022_42_1_a4
ER  - 
%0 Journal Article
%A Dyer, Danny
%A Howell, Jared
%T Bounds on Watching and Watching Graph Products
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 63-79
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a4/
%G en
%F DMGT_2022_42_1_a4
Dyer, Danny; Howell, Jared. Bounds on Watching and Watching Graph Products. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 63-79. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a4/

[1] I. Beaton, R. Begin, S. Finbow and C.M. van Bommel, Even time constraints on the watchman’s walk, Australas. J. Combin. 56 (2013) 113–121.

[2] T.Y. Chang, Domination Numbers of Grid Graphs (PhD. Thesis, ProQuest LLC, Ann Arbor, MI, University of South Florida, 1992).

[3] K. Clarke, The Watchman’s Walk on Cartesian Products and Circulants, Thesis (Honours)—Memorial University of Newfoundland.

[4] S. Crevals and P.R.J.Östergård, Independent domination of grids, Discrete Math. 338 (2015) 1379–1384. https://doi.org/10.1016/j.disc.2015.02.015

[5] C. Davies, S. Finbow, B.L. Hartnell, Q. Li and K. Schmeisser, The watchman problem on trees, Bull. Inst. Combin. Appl. 37 (2003) 35–43.

[6] D. Dyer and R. Milley, A time-constrained variation of the watchman’s walk problem, Australas. J. Combin. 53 (2012) 97–108.

[7] D. Dyer and J. Howell, The multiplicity of watchman’s walks, Congr. Numer. 226 (2016) 301–317.

[8] D. Dyer and J. Howell, Watchman’s walks of Steiner triple system block intersection graphs, Australas. J. Combin. 68 (2017) 23–34.

[9] S. Finbow, M.E. Messinger and M.F. van Bommel, Eternal domination on 3 × n grid graphs, Australas. J. Combin. 61 (2015) 156–174.

[10] D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé, The domination number of grids, SIAM J. Discrete Math. 25 (2011) 1443–1453. https://doi.org/10.1137/11082574

[11] B.L. Hartnell, D.F. Rall and C.A. Whitehead, The watchman’s walk problem: An introduction, Congr. Numer. 130 (1998) 149–155.

[12] B.L. Hartnell and C.A. Whitehead, Minimum dominating walks in Cartesian product graphs, Util. Math. 65 (2004) 73–82.

[13] B.L. Hartnell and C.A. Whitehead, Minimum dominating walks on graphs with large circumference, Util. Math. 78 (2009) 33–40.