On L(2, 1)-Labelings of Oriented Graphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 39-46.

Voir la notice de l'article provenant de la source Library of Science

We extend a result of Griggs and Yeh about the maximum possible value of the L(2, 1)-labeling number of a graph in terms of its maximum degree to oriented graphs. We consider the problem both in the usual definition of the oriented L(2, 1)-labeling number and in some variants we introduce.
Keywords: L (2,1)-labeling, directed graphs
@article{DMGT_2022_42_1_a2,
     author = {Colucci, Lucas and Gy\H{o}ri, Ervin},
     title = {On {L(2,} {1)-Labelings} of {Oriented} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {39--46},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a2/}
}
TY  - JOUR
AU  - Colucci, Lucas
AU  - Győri, Ervin
TI  - On L(2, 1)-Labelings of Oriented Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 39
EP  - 46
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a2/
LA  - en
ID  - DMGT_2022_42_1_a2
ER  - 
%0 Journal Article
%A Colucci, Lucas
%A Győri, Ervin
%T On L(2, 1)-Labelings of Oriented Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 39-46
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a2/
%G en
%F DMGT_2022_42_1_a2
Colucci, Lucas; Győri, Ervin. On L(2, 1)-Labelings of Oriented Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a2/

[1] K.-C. Yeh, Labeling Graphs with a Condition at Distance Two, Ph.D. Thesis (University of South Carolina, 1990).

[2] G.J. Chang and S.-C. Liaw, The L (2, 1) -labeling problem on ditrees, Ars Combin. 66 (2003) 23–31.

[3] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586–595. https://doi.org/10.1137/0405048

[4] T. Calamoneri and B. Sinaimeri, L (2, 1) -labeling of oriented planar graphs, Discrete Appl. Math. 161 (2013) 1719–1725. https://doi.org/10.1016/j.dam.2012.07.009

[5] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980) 1497–1514. https://doi.org/10.1109/PROC.1980.11899

[6] T. Calamoneri, The L(h, k) -labelling problem: an updated survey and annotated bibliography, available on http://www.dsi.uniroma1.it/$\sim$calamo/PDF-FILES/survey.pdf (2014).

[7] R.K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217–1231. https://doi.org/10.1016/j.disc.2005.11.029

[8] F. Havet, B. Reed and J.-S. Sereni, L (2, 1) -labelling of graphs, in: Proc. Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2008) 621–630.

[9] C. Lu and Q. Zhou, Path covering number and L (2, 1) -labeling number of graphs, Discrete Appl. Math. 161 (2013) 2062–2074. https://doi.org/10.1016/j.dam.2013.02.020

[10] T. Calamoneri, The L (h, k ) -labelling problem: an updated survey and annotated bibliography, Comput. J. 54 (2011) 1344–1371. https://doi.org/10.1093/comjnl/bxr037

[11] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1–6. https://doi.org/10.1002/net.10007