Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_1_a17, author = {Hochst\"attler, Winfried and Steiner, Raphael}, title = {The {Star} {Dichromatic} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {277--298}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a17/} }
Hochstättler, Winfried; Steiner, Raphael. The Star Dichromatic Number. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 277-298. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a17/
[1] D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46 (2004) 227–224. https://doi.org/10.1002/jgt.20003
[2] G. Chartrand and H.V. Kronk, The point-arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612–616. https://doi.org/10.1112/jlms/s1-44.1.612
[3] G. Cornuéjols, Combinatorial Optimization: Packing and Covering (SIAM, Philadelphia, 2001). https://doi.org/10.1137/1.9780898717105
[4] T. Feder, P. Hell and B. Mohar, Acyclic homomorphisms and circular colorings of digraphs, SIAM J. Discrete Math. 17 (2003) 161–169. https://doi.org/10.1137/S0895480103422184
[5] A. Harutyunyan and B. Mohar, Two results on the digraph chromatic number, J. Discrete Math. 312 (2012) 1823–1826. https://doi.org/10.1016/j.disc.2012.01.028
[6] W. Hochstättler, F. Schröder and R. Steiner, On the complexity of digraph colourings and vertex arboricity, Discrete Math. Theor. Comput. Sci. 22 (2020) #4. https://doi.org/10.23638/DMTCS-22-1-4
[7] K. Knauer, P. Valicov and P.S. Wenger, Planar digraphs without large acyclic sets, J. Graph Theory 85 (2017) 288–291. https://doi.org/10.1002/jgt.22061
[8] Z. Li and B. Mohar, Planar digraphs of digirth four are 2 -colorable, SIAM J. Discrete Math. 31 (2017) 2201–2205. https://doi.org/10.1137/16M108080X
[9] A. Lehman, On the width-length inequality, Math. Program. 17 (1979) 403–417. https://doi.org/10.1007/BF01588263
[10] C.L. Lucchesi and D.H. Younger, A minimax theorem for directed graphs, J. London Math. Soc. (2) 17 (1978) 369–374. https://doi.org/10.1112/jlms/s2-17.3.369
[11] B. Mohar, Circular colorings of edge-weighted graphs, J. Graph Theory 43 (2003) 107–116. https://doi.org/10.1002/jgt.10106
[12] B. Mohar and H. Wu, Dichromatic number and fractional chromatic number, Forum Math. Sigma 4 (2016) e32. https://doi.org/10.1017/fms.2016.28
[13] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs (Dover Publications, Mineola, New York, 2013).
[14] R. Steiner, Neumann-Lara-Flows and the Two-Colour-Conjecture (Master’s Thesis, FernUniversität in Hagen, 2018).
[15] A. Vince, Star chromatic number, J. Graph Theory 12 (1988) 551–559. https://doi.org/10.1002/jgt.3190120411
[16] G. Wang, S. Zhou, G. Liu and J. Wu, Circular vertex arboricity, J. Discrete Appl. Math. 159 (2011) 1231–1238. https://doi.org/10.1016/j.dam.2011.04.009
[17] Woodall’s Conjecture, at Open Problem Garden. http://www.openproblemgarden.org/op/woodallsσconjecture
[18] X. Zhu, Circular chromatic number: A survey, J. Discrete Math. 229 (2001) 371–410. https://doi.org/10.1016/S0012-365X(00)00217-X