Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_1_a16, author = {Wang, Jieyan}, title = {Packing {Trees} in {Complete} {Bipartite} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {263--275}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a16/} }
Wang, Jieyan. Packing Trees in Complete Bipartite Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 263-275. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a16/
[1] D. Burns and S. Schuster, Embedding (p, p−1)-graphs in their complements, Israel J. Math. 30 (1978) 313–320. https://doi.org/10.1007/BF02761996
[2] A. Gyárfás and J. Lehel, Packing trees of different order into Kn, Colloq. Math. Soc. János Bolyai 18 (1978) 463–469.
[3] S.P. Haler and H. Wang, Packing four copies of a tree into a complete graph, Australas. J. Combin. 59 (2014) 323–332.
[4] J.M. Harris, J. Hirst and M.J. Mossingho, Combinatorics and Graph Theory (Springer, New York, 2010). https://doi.org/10.1007/978-0-387-79711-3
[5] B. Orchel, 2-placement of (p, q)- trees, Discuss. Math. Graph Theory 23 (2003) 23–26. https://doi.org/10.7151/dmgt.1183
[6] H. Wang and N. Sauer, Packing three copies of a tree into a complete graph, European J. Combin. 14 (1993) 137–142. https://doi.org/10.1006/eujc.1993.1018
[7] H. Wang, Packing two forests into a bipartite graph, J. Graph Theory 23 (1996) 209–213. https://doi.org/10.1002/(SICI)1097-0118(199610)23:2¡209::AID-JGT12¿3.0.CO;2-B
[8] H. Wang, Packing three copies of a tree into a complete bipartite graph, Ann. Comb. 13 (2009) 261–269. https://doi.org/10.1007/s00026-009-0022-0
[9] M. Woźniak, Packing of graphs and permutations—a survey, Discrete Math. 276 (2004) 379–391. https://doi.org/10.1016/S0012-365X(03)00296-6
[10] H.P. Yap, Packing of graphs—a survey, Discrete Math. 72 (1988) 395–404. https://doi.org/10.1016/0012-365X(88)90232-4