On the ρ-Edge Stability Number of Graphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 249-262
Voir la notice de l'article provenant de la source Library of Science
For an arbitrary invariant ρ(G) of a graph G the ρ-edge stability number es_ρ (G) is the minimum number of edges of G whose removal results in a graph H ⊆ G with ρ (H) ρ (G) or with E(H) = ∅.
In the first part of this paper we give some general lower and upper bounds for the ρ-edge stability number. In the second part we study the χ^'-edge stability number of graphs, where χ^' = χ^' (G) is the chromatic index of G. We prove some general results for the so-called chromatic edge stability index es_χ^′ (G) and determine es_χ^′ (G) exactly for specific classes of graphs.
Keywords:
edge stability number, line stability, invariant, chromatic edge stability index, chromatic index, edge coloring
@article{DMGT_2022_42_1_a15,
author = {Kemnitz, Arnfried and Marangio, Massimiliano},
title = {On the {\ensuremath{\rho}-Edge} {Stability} {Number} of {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {249--262},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a15/}
}
TY - JOUR AU - Kemnitz, Arnfried AU - Marangio, Massimiliano TI - On the ρ-Edge Stability Number of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 249 EP - 262 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a15/ LA - en ID - DMGT_2022_42_1_a15 ER -
Kemnitz, Arnfried; Marangio, Massimiliano. On the ρ-Edge Stability Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 249-262. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a15/