Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_1_a14, author = {Henning, Michael A. and Pal, Saikat and Pradhan, D.}, title = {The {Semitotal} {Domination} {Problem} in {Block} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {231--248}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a14/} }
TY - JOUR AU - Henning, Michael A. AU - Pal, Saikat AU - Pradhan, D. TI - The Semitotal Domination Problem in Block Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 231 EP - 248 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a14/ LA - en ID - DMGT_2022_42_1_a14 ER -
Henning, Michael A.; Pal, Saikat; Pradhan, D. The Semitotal Domination Problem in Block Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 231-248. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a14/
[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms (Addison-Wesley, Boston, 1974).
[2] K.S. Booth and J.H. Johnson, Dominating sets in chordal graphs, SIAM J. Comput. 11 (1982) 191–199. https://doi.org/10.1137/0211015
[3] W. Goddard, M.A. Henning and C.A. McPillan, Semitotal domination in graphs, Util. Math. 94 (2014) 67–81.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker Inc., New York, 1998).
[6] T.W. Haynes and M.A. Henning, Perfect graphs involving semitotal and semipaired domination, J. Comb. Optim. 36 (2018) 416–433. https://doi.org/10.1007/s10878-018-0303-9
[7] M.A. Henning, Edge weighting functions on semitotal dominating sets, Graphs Combin. 33 (2017) 403–417. https://doi.org/10.1007/s00373-017-1769-4
[8] M.A. Henning and A.J. Marcon, On matching and semitotal domination in graphs, Discrete Math. 324 (2014) 13–18. https://doi.org/10.1016/j.disc.2014.01.021
[9] M.A. Henning and A.J. Marcon, Vertices contained in all or in no minimum semi-total dominating set of a tree, Discuss. Math. Graph Theory 36 (2016) 71–93. https://doi.org/10.7151/dmgt.1844
[10] M.A. Henning and A.J. Marcon, Semitotal domination in claw-free cubic graphs, Ann. Comb. 20 (2016)) 799–813. https://doi.org/10.1007/s00026-016-0331-z
[11] M.A. Henning and A.J. Marcon, Semitotal domination in graphs: Partition and algorithmic results, Util. Math. 106 (2018) 165–184.
[12] M.A. Henning and A. Pandey, Algorithmic aspects of semitotal domination in graphs, Theoret. Comput. Sci. 766 (2019) 46–57. https://doi.org/10.1016/j.tcs.2018.09.019
[13] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-6525-6
[14] Z. Shao and P. Wu, Complexity and approximation ratio of semitotal domination in graphs, Commun. Comb. Optim. 3 (2018) 143–150. https://doi.org/10.22049/CCO.2018.25987.1065
[15] W. Zhuang and G. Hao, Semitotal domination in trees, Discrete Math. Theoret. Comput. Sci. 20 (2) (2018) #5. https://doi.org/10.23638/DMTCS-20-2-5