Asymptotic Enumeration of Non-Uniform Linear Hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 219-230.

Voir la notice de l'article provenant de la source Library of Science

A linear hypergraph, also known as a partial Steiner system, is a collection of subsets of a set such that no two of the subsets have more than one element in common. Most studies of linear hypergraphs consider only the uniform case, in which all the subsets have the same size. In this paper we provide, for the first time, asymptotically precise estimates of the number of linear hypergraphs in the non-uniform case, as a function of the number of subsets of each size.
Keywords: Steiner system, linear hypergraph, asymptotic enumeration, switching method
@article{DMGT_2022_42_1_a13,
     author = {Hasheminezhad, Mahdieh and McKay, Brendan D.},
     title = {Asymptotic {Enumeration} of {Non-Uniform} {Linear} {Hypergraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {219--230},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a13/}
}
TY  - JOUR
AU  - Hasheminezhad, Mahdieh
AU  - McKay, Brendan D.
TI  - Asymptotic Enumeration of Non-Uniform Linear Hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 219
EP  - 230
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a13/
LA  - en
ID  - DMGT_2022_42_1_a13
ER  - 
%0 Journal Article
%A Hasheminezhad, Mahdieh
%A McKay, Brendan D.
%T Asymptotic Enumeration of Non-Uniform Linear Hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 219-230
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a13/
%G en
%F DMGT_2022_42_1_a13
Hasheminezhad, Mahdieh; McKay, Brendan D. Asymptotic Enumeration of Non-Uniform Linear Hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 219-230. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a13/

[1] V. Blinovsky and C. Greenhill, Asymptotic enumeration of sparse uniform linear hypergraphs with given degrees, Electron. J. Combin. 23 (2016) #P3.17. https://doi.org/10.37236/5512

[2] D.A. Grable and K.T. Phelps, Random methods in design theory: A survey, J. Combin. Des. 4 (1996) 255–273. https://doi.org/10.1002/(SICI)1520-6610(1996)4:4¡255::AID-JCD4¿3.0.CO;2-E

[3] C. Greenhill, B.D. McKay and X. Wang, Asymptotic enumeration of sparse 0 − 1 matrices with irregular row and column sums, J. Combin. Theory Ser. A 113 (2006) 291–324. https://doi.org/10.1016/j.jcta.2005.03.005

[4] B.D. McKay and Fang Tian, Asymptotic enumeration of linear hypergraphs with given number of vertices and edges (2019). arXiv:1908.06333

[5] R.M. Wilson, An existence theory for pairwise balanced designs, III: Proof of the existence conjectures, J. Combin. Theory Ser. A 18 (1975) 71–79. https://doi.org/10.1016/0097-3165(75)90067-9