Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_1_a11, author = {Zheng, Wei and Broersma, Hajo and Wang, Ligong}, title = {Toughness, {Forbidden} {Subgraphs,} and {Hamilton-Connected} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {187--196}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a11/} }
TY - JOUR AU - Zheng, Wei AU - Broersma, Hajo AU - Wang, Ligong TI - Toughness, Forbidden Subgraphs, and Hamilton-Connected Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 187 EP - 196 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a11/ LA - en ID - DMGT_2022_42_1_a11 ER -
Zheng, Wei; Broersma, Hajo; Wang, Ligong. Toughness, Forbidden Subgraphs, and Hamilton-Connected Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 187-196. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a11/
[1] D. Bauer, H.J. Broersma, J.P.M. van den Heuvel and H.J. Veldman, On Hamiltonian properties of 2-tough graphs, J. Graph Theory 18 (1994) 539–543. https://doi.org/10.1002/jgt.3190180602
[2] D. Bauer, H.J. Broersma and H.J. Veldman, Not every 2 -tough graph is Hamiltonian, Discrete Appl. Math. 99 (2000) 317–321. https://doi.org/10.1016/S0166-218X(99)00141-9
[3] D. Bauer, H.J. Broersma and E. Schmeichel, Toughness in graphs—A survey, Graphs Combin. 22 (2006) 1–35. https://doi.org/10.1007/s00373-006-0649-0
[4] J.A. Bondy and U.S.R. Murty, Graph Theory (Grad. Texts in Math. 244 Springer-Verlag, London, 2008).
[5] H.J. Broersma, How tough is toughness ?, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 117 (2015).
[6] G. Chen and R.J. Gould, Hamiltonian connected graphs involving forbidden subgraphs, Bull. Inst. Combin. Appl. 29 (2000) 25–32.
[7] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215–228. https://doi.org/10.1016/0012-365X(73)90138-6
[8] H.A. Jung, On a class of posets and the corresponding comparability graphs, J. Combin. Theory Ser. B 24 (1978) 125–133. https://doi.org/10.1016/0095-8956(78)90013-8
[9] D. Kratsch, J. Lehel and H. Müller, Toughness, Hamiltonicity and split graphs, Discrete Math. 150 (1996) 231–245. https://doi.org/10.1016/0012-365X(95)00190-8
[10] B. Li, H.J. Broersma and S. Zhang, Forbidden subgraphs for Hamiltonicity of 1- tough graphs, Discuss. Math. Graph Theory 36 (2016) 915–929. https://doi.org/10.7151/dmgt.1897
[11] M.M. Matthews and D.P. Sumner, Hamiltonian results in K1,3-free graphs, J. Graph Theory 8 (1984) 139–146. https://doi.org/10.1002/jgt.3190080116
[12] Zh.G. Nikoghosyan, Disconnected forbidden subgraphs, toughness and Hamilton cycles, ISRN Combinatorics 2013 (2013) 673971. https://doi.org/10.1155/2013/673971