3-Tuple Total Domination Number of Rook’s Graphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 15-37.

Voir la notice de l'article provenant de la source Library of Science

A k-tuple total dominating set (kTDS) of a graph G is a set S of vertices in which every vertex in G is adjacent to at least k vertices in S. The minimum size of a kTDS is called the k-tuple total dominating number and it is denoted by γ×k,t(G). We give a constructive proof of a general formula for γ×3,t(Kn□Km).
Keywords: k -tuple total domination, Cartesian product of graphs, rook’s graph, Vizing’s conjecture
@article{DMGT_2022_42_1_a1,
     author = {Pahlavsay, Behnaz and Palezzato, Elisa and Torielli, Michele},
     title = {3-Tuple {Total} {Domination} {Number} of {Rook{\textquoteright}s} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {15--37},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a1/}
}
TY  - JOUR
AU  - Pahlavsay, Behnaz
AU  - Palezzato, Elisa
AU  - Torielli, Michele
TI  - 3-Tuple Total Domination Number of Rook’s Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 15
EP  - 37
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a1/
LA  - en
ID  - DMGT_2022_42_1_a1
ER  - 
%0 Journal Article
%A Pahlavsay, Behnaz
%A Palezzato, Elisa
%A Torielli, Michele
%T 3-Tuple Total Domination Number of Rook’s Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 15-37
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a1/
%G en
%F DMGT_2022_42_1_a1
Pahlavsay, Behnaz; Palezzato, Elisa; Torielli, Michele. 3-Tuple Total Domination Number of Rook’s Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 1, pp. 15-37. http://geodesic.mathdoc.fr/item/DMGT_2022_42_1_a1/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).

[2] B. Brešar, P. Dorbec, W. Goddard, B. Hartnell, M. Henning, S. Klavžar and D. Rall, Vizing’s conjecture: a survey and recent results, J. Graph Theory 69 (2012) 46–76. https://doi.org/10.1002/jgt.20565

[3] B. Brešar, M.A. Henning and S. Klavžar, On integer domination in graphs and Vizing-like problems, Taiwanese J. Math. 10 (2006) 1317–1328. https://doi.org/10.11650/twjm/1500557305

[4] B. Brešar, M.A. Henning and D.F. Rall, Paired-domination of Cartesian products of graphs, Util. Math. 73 (2007) 255–265.

[5] P.A. Burchett, On the border queens problem and k-tuple domination on the rook’s graph, Congr. Numer. 209 (2011) 179–187.

[6] P.A. Burchett, D. Lane and J.A. Lachniet, k-tuple and k-domination on the rook’s graph and other results, Congr. Numer. 199 (2009) 187–204.

[7] K. Choudhary, S. Margulies and I.V. Hicks, A note on total and paired domination of Cartesian product graphs, Electron. J. Combin. 20 (3) (2013) #P25. https://doi.org/10.37236/2535

[8] K. Choudhary, S. Margulies and I.V. Hicks, Integer domination of Cartesian product graphs, Discrete Math. 338 (2015) 1239–1242. https://doi.org/10.1016/j.disc.2015.01.032

[9] E.W. Clark and S. Suen, An inequality related to Vizing’s Conjecture, Electron. J. Combin. 7 (2000) #N4. https://doi.org/10.37236/1542

[10] D.C. Fisher, J. Ryan, G. Domke and A. Majumdar, Fractional domination of strong direct products, Discrete Appl. Math. 50 (1994) 89–91. https://doi.org/10.1016/0166-218X(94)90165-1

[11] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201–213.

[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[14] M.A. Henning and A.P. Kazemi, k-tuple total domination in cross products of graphs, J. Comb. Optim. 24 (2012) 339–346. https://doi.org/10.1007/s10878-011-9389-z

[15] M.A. Henning and A.P. Kazemi, k-tuple total domination in graphs, Discrete Appl. Math. 158 (2010) 1006–1011. https://doi.org/10.1016/j.dam.2010.01.009

[16] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs Combin. 21 (2005) 63–69. https://doi.org/10.1007/s00373-004-0586-8

[17] P.T. Ho, A note on the total domination number, Util. Math. 77 (2008) 97–100.

[18] X.M. Hou and F. Jiang, Paired domination of Cartesian products of graphs, J. Math. Res. Exposition 30 (2010) 181–185.

[19] X.M. Hou and Y. Lu, On the { k } -domination number of Cartesian products of graphs, Discrete Math. 309 (2009) 3413–3419. https://doi.org/10.1016/j.disc.2008.07.030

[20] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley & Sons, New York, 2000).

[21] A.P. Kazemi and B. Pahlavsay, k-tuple total domination in supergeneralized Petersen graphs, Comm. Math. Appl. 2 (2011) 21–30.

[22] A.P. Kazemi, B. Pahlavsay and R.J. Stones, Cartesian product graphs and k-tuple total domination, Filomat 32 (2018) 6713–6731. https://doi.org/10.2298/FIL1819713K

[23] V.G. Vizing, Some unsolved problems in graph theory, Russ. Math. Surveys 23 (1968) 125–145. https://doi.org/10.1070/RM1968v023n06ABEH001252