The Spectrum Problem for the Connected Cubic Graphs of Order 10
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 963-980.

Voir la notice de l'article provenant de la source Library of Science

We show that if G is a connected cubic graph of order 10, then there exists a G-decomposition of Kv if and only if v ≡ 1 or 10 (mod 15) except when v = 10 and G is one of 5 specific graphs.
Keywords: spectrum problem, graph decomposition, cubic graphs
@article{DMGT_2021_41_4_a6,
     author = {Adams, Peter and El-Zanati, Saad I. and Odaba\c{s}i, U\u{g}ur and Wannasit, Wannasiri},
     title = {The {Spectrum} {Problem} for the {Connected} {Cubic} {Graphs} of {Order} 10},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {963--980},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a6/}
}
TY  - JOUR
AU  - Adams, Peter
AU  - El-Zanati, Saad I.
AU  - Odabaşi, Uğur
AU  - Wannasit, Wannasiri
TI  - The Spectrum Problem for the Connected Cubic Graphs of Order 10
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 963
EP  - 980
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a6/
LA  - en
ID  - DMGT_2021_41_4_a6
ER  - 
%0 Journal Article
%A Adams, Peter
%A El-Zanati, Saad I.
%A Odabaşi, Uğur
%A Wannasit, Wannasiri
%T The Spectrum Problem for the Connected Cubic Graphs of Order 10
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 963-980
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a6/
%G en
%F DMGT_2021_41_4_a6
Adams, Peter; El-Zanati, Saad I.; Odabaşi, Uğur; Wannasit, Wannasiri. The Spectrum Problem for the Connected Cubic Graphs of Order 10. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 963-980. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a6/

[1] P. Adams and D. Bryant, The spectrum problem for the Petersen graph, J. Graph Theory 22 (1996) 175–180. https://doi.org/10.1002/(SICI)1097-0118(199606)22:2¡175::AID-JGT8¿3.0.CO;2-K

[2] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008) 373–410. https://doi.org/10.1002/jcd.20170

[3] P. Adams, D. Bryant and A. Khodkar, Uniform 3-factorisations of K10, Congr. Numer. 127 (1997) 23–32.

[4] P. Adams, C. Chan, S.I. El-Zanati, E. Holdaway, U. Odabaşı and J. Ward, The spectrum problem for 3 of the cubic graphs of order 10, J. Combin. Math. Combin. Comput., to appear.

[5] P. Adams, S.I. El-Zanati and W. Wannasit, The spectrum problem for the cubic graphs of order 8, Ars Combin. 137 (2018) 345–354.

[6] B. Alspach and H. Gavlas, Cycle decompositions of Kn and Kn − I, J. Combin. Theory Ser. B 81 (2001) 77–99. https://doi.org/10.1006/jctb.2000.1996

[7] D. Bryant and S.I. El-Zanati, Graph decompositions, in: Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz (Ed(s)), 2nd Ed. (Chapman & Hall/CRC, Boca Raton, 2007) 477–485.

[8] D.E. Bryant and T.A. McCourt, Existence results for G-designs. http://wiki.smp.uq.edu.au/G-designs/

[9] J.E. Carter, Designs on Cubic Multigraphs, Ph.D. Thesis (McMaster University, Hamilton, 1989).

[10] C.J. Colbourn and J.H. Dinitz, Handbook of Combinatorial Designs (Chapman/CRC Press, Boca Raton, 2007).

[11] G. Ge, Group divisible designs, in: Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz (Ed(s)), 2nd Ed. (Chapman & Hall/CRC, Boca Raton, 2007) 255–260.

[12] R.K. Guy and L.W. Beineke, The coarseness of the complete graph, Canad. J. Math. 20 (1968) 888–894. https://doi.org/10.4153/CJM-1968-085-6

[13] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961) 361–386. https://doi.org/10.1214/aoms/1177705047

[14] D. Hanson, A quick proof that K 10 ≠ P + P + P, Discrete Math. 101 (1992) 107–108. https://doi.org/10.1016/0012-365X(92)90595-7

[15] T.P. Kirkman, On a problem in combinatorics, Cambridge Dublin Math. J. 2 (1847) 191–204.

[16] M. Maheo, Strongly graceful graphs, Discrete Math. 29 (1980) 39–46. https://doi.org/10.1016/0012-365X(90)90285-P

[17] M. Meszka, R. Nedela, A. Rosa and M. Škoviera, Decompositions of complete graphs into circulants, Discrete Math. 339 (2016) 2471–2480. https://doi.org/10.1016/j.disc.2016.04.009

[18] R.C. Read and R.J. Wilson, An Atlas of Graphs (Oxford University Press, Oxford, 1998).

[19] W. Wannasit and S.I. El-Zanati, On free α-labelings of cubic bipartite graphs, J. Combin. Math. Combin. Comput. 82 (2012) 269–293.

[20] W. Wannasit and S.I. El-Zanati, On cyclic G-designs where G is a cubic tripartite graph, Discrete Math. 312 (2012) 293–305. https://doi.org/10.1016/j.disc.2011.09.017