On Edge H-Irregularity Strengths of Some Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 949-961.

Voir la notice de l'article provenant de la source Library of Science

For a graph G an edge-covering of G is a family of subgraphs H1, H2, . . ., Ht such that each edge of E(G) belongs to at least one of the subgraphs Hi, i = 1, 2, . . ., t. In this case we say that G admits an (H1, H2, . . ., Ht)-(edge) covering. An H-covering of graph G is an (H1, H2, . . ., Ht)-(edge) covering in which every subgraph Hi is isomorphic to a given graph H. Let G be a graph admitting H-covering. An edge k-labeling α : E(G) → 1, 2, . . ., k is called an H-irregular edge k-labeling of the graph G if for every two different subgraphs H′ and H′′ isomorphic to H their weights wtα(H′) and wtα(H′″) are distinct. The weight of a subgraph H under an edge k-labeling is the sum of labels of edges belonging to H. The edge H-irregularity strength of a graph G, denoted by ehs(G, H), is the smallest integer k such that G has an H-irregular edge k-labeling. In this paper we determine the exact values of ehs(G, H) for prisms, antiprisms, triangular ladders, diagonal ladders, wheels and gear graphs. Moreover the subgraph H is isomorphic to only C4, C3 and K4.
Keywords: prism, antiprism, triangular ladder, diagonal ladder, wheel, gear graph, H-irregular edge labeling, edge H-irregularity strength
@article{DMGT_2021_41_4_a5,
     author = {Naeem, Muhammad and Siddiqui, Muhammad Kamran and Ba\v{c}a, Martin and Semani\v{c}ov\'a-Fe\v{n}ov\v{c}{\'\i}kov\'a, Andrea and Ashraf, Faraha},
     title = {On {Edge} {H-Irregularity} {Strengths} of {Some} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {949--961},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a5/}
}
TY  - JOUR
AU  - Naeem, Muhammad
AU  - Siddiqui, Muhammad Kamran
AU  - Bača, Martin
AU  - Semaničová-Feňovčíková, Andrea
AU  - Ashraf, Faraha
TI  - On Edge H-Irregularity Strengths of Some Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 949
EP  - 961
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a5/
LA  - en
ID  - DMGT_2021_41_4_a5
ER  - 
%0 Journal Article
%A Naeem, Muhammad
%A Siddiqui, Muhammad Kamran
%A Bača, Martin
%A Semaničová-Feňovčíková, Andrea
%A Ashraf, Faraha
%T On Edge H-Irregularity Strengths of Some Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 949-961
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a5/
%G en
%F DMGT_2021_41_4_a5
Naeem, Muhammad; Siddiqui, Muhammad Kamran; Bača, Martin; Semaničová-Feňovčíková, Andrea; Ashraf, Faraha. On Edge H-Irregularity Strengths of Some Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 949-961. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a5/

[1] A. Ahmad, O.B.S. Al-Mushayt and M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput. 243 (2014) 607–610. https://doi.org/10.1016/j.amc.2014.06.028

[2] M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990) 439–449. https://doi.org/10.1137/0403038

[3] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15–38. https://doi.org/10.1016/S0012-365X(98)00112-5

[4] F. Ashraf, M. Bača, Z. Kimáková and A. Semaničová-Feňovčíková, On vertex and edge H-irregularity strengths of graphs, Discrete Math. Algorithms Appl. 8 (2016) 1650070. https://doi.org/10.1142/S1793830916500701

[5] M. Anholcer and C. Palmer, Irregular labellings of circulant graphs, Discrete Math. 312 (2012) 3461–3466. https://doi.org/10.1016/j.disc.2012.06.017

[6] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241–254. https://doi.org/10.1002/jgt.10158

[7] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187–192.

[8] R.J. Faudree and J. Lehel, Bound on the irregularity strength of regular graphs, Colloq. Math. Soc. János Bolyai, 52, Combinatorics, Eger North Holland, Amsterdam (1987) 247–256.

[9] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120–137. https://doi.org/10.1002/jgt.10056

[10] M. Imran, M. Naeem and A.Q. Baig, On vertex covering number of rotationally-symmetric graphs, Util. Math. 97 (2015) 295–307.

[11] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 1319–1321. https://doi.org/10.1137/090774112

[12] P. Majerski and J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014) 197–205. https://doi.org/10.1137/120886650

[13] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313–323. https://doi.org/10.1137/S0895480196314291

[14] J. Przybyło, Irregularity strength of regular graphs, Electron. J. Combin. 15 (2008) #R82. https://doi.org/10.37236/806