The Lagrangian Density of {123, 234, 456} and the Turán Number of its Extension
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 905-921

Voir la notice de l'article provenant de la source Library of Science

Given a positive integer n and an r-uniform hypergraph F, the Turán number ex(n, F) is the maximum number of edges in an F-free r-uniform hypergraph on n vertices. The Turán density of F is defined as π(F)=lim_n→∞ex(n,F)/nr. The Lagrangian density of F is π_λ(F) = sup{r!λ(G):G is F-free}, where λ(G) is the Lagrangian of G. Sidorenko observed that π(F) ≤ π_λ(F), and Pikhurko observed that π(F) = π_λ(F) if every pair of vertices in F is contained in an edge of F. Recently, Lagrangian densities of hypergraphs and Turán numbers of their extensions have been studied actively. For example, in the paper [A hypergraph Turán theorem via Lagrangians of intersecting families, J. Combin. Theory Ser. A 120 (2013) 2020–2038], Hefetz and Keevash studied the Lagrangian densitiy of the 3-uniform graph spanned by 123, 456 and the Turán number of its extension. In this paper, we show that the Lagrangian density of the 3-uniform graph spanned by 123, 234, 456 achieves only on K_5^3. Applying it, we get the Turán number of its extension, and show that the unique extremal hyper-graph is the balanced complete 5-partite 3-uniform hypergraph on n vertices.
Keywords: Turán number, hypergraph Lagrangian, Lagrangian density
@article{DMGT_2021_41_4_a3,
     author = {Chen, Pingge and Liang, Jinhua and Peng, Yuejian},
     title = {The {Lagrangian} {Density} of {123, 234, 456} and the {Tur\'an} {Number} of its {Extension}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {905--921},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a3/}
}
TY  - JOUR
AU  - Chen, Pingge
AU  - Liang, Jinhua
AU  - Peng, Yuejian
TI  - The Lagrangian Density of {123, 234, 456} and the Turán Number of its Extension
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 905
EP  - 921
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a3/
LA  - en
ID  - DMGT_2021_41_4_a3
ER  - 
%0 Journal Article
%A Chen, Pingge
%A Liang, Jinhua
%A Peng, Yuejian
%T The Lagrangian Density of {123, 234, 456} and the Turán Number of its Extension
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 905-921
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a3/
%G en
%F DMGT_2021_41_4_a3
Chen, Pingge; Liang, Jinhua; Peng, Yuejian. The Lagrangian Density of {123, 234, 456} and the Turán Number of its Extension. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 905-921. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a3/