The Lagrangian Density of {123, 234, 456} and the Turán Number of its Extension
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 905-921.

Voir la notice de l'article provenant de la source Library of Science

Given a positive integer n and an r-uniform hypergraph F, the Turán number ex(n, F) is the maximum number of edges in an F-free r-uniform hypergraph on n vertices. The Turán density of F is defined as π(F)=lim_n→∞ex(n,F)/nr. The Lagrangian density of F is π_λ(F) = sup{r!λ(G):G is F-free}, where λ(G) is the Lagrangian of G. Sidorenko observed that π(F) ≤ π_λ(F), and Pikhurko observed that π(F) = π_λ(F) if every pair of vertices in F is contained in an edge of F. Recently, Lagrangian densities of hypergraphs and Turán numbers of their extensions have been studied actively. For example, in the paper [A hypergraph Turán theorem via Lagrangians of intersecting families, J. Combin. Theory Ser. A 120 (2013) 2020–2038], Hefetz and Keevash studied the Lagrangian densitiy of the 3-uniform graph spanned by 123, 456 and the Turán number of its extension. In this paper, we show that the Lagrangian density of the 3-uniform graph spanned by 123, 234, 456 achieves only on K_5^3. Applying it, we get the Turán number of its extension, and show that the unique extremal hyper-graph is the balanced complete 5-partite 3-uniform hypergraph on n vertices.
Keywords: Turán number, hypergraph Lagrangian, Lagrangian density
@article{DMGT_2021_41_4_a3,
     author = {Chen, Pingge and Liang, Jinhua and Peng, Yuejian},
     title = {The {Lagrangian} {Density} of {123, 234, 456} and the {Tur\'an} {Number} of its {Extension}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {905--921},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a3/}
}
TY  - JOUR
AU  - Chen, Pingge
AU  - Liang, Jinhua
AU  - Peng, Yuejian
TI  - The Lagrangian Density of {123, 234, 456} and the Turán Number of its Extension
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 905
EP  - 921
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a3/
LA  - en
ID  - DMGT_2021_41_4_a3
ER  - 
%0 Journal Article
%A Chen, Pingge
%A Liang, Jinhua
%A Peng, Yuejian
%T The Lagrangian Density of {123, 234, 456} and the Turán Number of its Extension
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 905-921
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a3/
%G en
%F DMGT_2021_41_4_a3
Chen, Pingge; Liang, Jinhua; Peng, Yuejian. The Lagrangian Density of {123, 234, 456} and the Turán Number of its Extension. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 905-921. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a3/

[1] A. Brandt, D. Irwin and T. Jiang, Stability and Turán numbers of a class of hyper-graphs via Lagrangians, Combin. Probab. Comput. 26 (2017) 367–405. https://doi.org/10.1017/S0963548316000444

[2] P. Chen, J. Liang and Y. Peng, Lagrangian density of {123, 234, 567} and Turán numbers of its extension, submitted.

[3] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blowups of the small witt-designs, J. Combin. Theory Ser. A 52 (1989) 129–147. https://doi.org/10.1016/0097-3165(89)90067-8

[4] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984) 149–159. https://doi.org/10.1007/BF02579215

[5] D. Hefetz and P. Keevash, A hypergraph Turán theorem via lagrangians of intersecting families, J. Combin. Theory Ser. A 120 (2013) 2020–2038. https://doi.org/10.1016/j.jcta.2013.07.011

[6] S. Hu, Y. Peng and B. Wu, Lagrangian densities of the disjoint union of 3 -uniform linear paths and matchings and Turán numbers of their extensions, submitted.

[7] T. Jiang, Y. Peng and B. Wu, Lagrangian densities of some sparse hypergraphs and Turán numbers of their extensions, European J. Combin. 73 (2018) 20–36. https://doi.org/10.1016/j.ejc.2018.05.001

[8] G. Katona, T. Nemetz and M. Simonovits, On a problem of Turán in the theory of graphs, Mat. Lapok (N.S.) 15 (1964) 228–238.

[9] P. Keevash, Hypergrah Turán problems, in: Surveys in Combinatorics 2011, London Math. Soc. Lecture Note Ser. 392 (Cambridge Univ. Press, Cambridge, 2011) 83–140. https://doi.org/10.1017/CB09781139004114

[10] T.S. Motzkin and E.G. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965) 533–540. https://doi.org/10.4153/CJM-1965-053-6

[11] D. Mubayi, A hypergraph extension of Turán’s theorem, J. Combin. Theory Ser. B 96 (2006) 122–134. https://doi.org/10.1016/j.jctb.2005.06.013

[12] D. Mubayi and O. Pikhurko, A new generalization of Mantel’s theorem to k-graphs, J. Combin. Theory Ser. B 97 (2007) 669–678. https://doi.org/10.1016/j.jctb.2006.11.003

[13] S. Norin and L. Yepremyan, Turán number of generalized triangles, J. Combin. Theory Ser. A 146 (2017) 312–343. https://doi.org/10.1016/j.jcta.2016.09.003

[14] S. Norin and L. Yepremyan, Turán numbers of extensions, J. Combin. Theory Ser. A 155 (2018) 476–492. https://doi.org/10.1016/j.jcta.2017.08.004

[15] O. Pikhurko, An exact Turán result for the generalized triangle, Combinatorica 28 (2008) 187–208. https://doi.org/10.1007/s00493-008-2187-2

[16] O. Pikhurko, Exact computation of the hypergraph Turán function for expanded complete 2-graphs, J. Combin. Theory Ser. B 103 (2013) 220–225. https://doi.org/10.1016/j.jctb.2012.09.005

[17] A.F. Sidorenko, The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs, Mat. Zametki 41 (1987) 433–455. https://doi.org/10.1027.BF01158259

[18] A.F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9 (1989) 207–215. https://doi.org/10.1007/BF02124681

[19] B. Wu and Y. Peng, Lagrangian densities of 3 -uniform linear paths and Turán numbers of their extensions, submitted.

[20] B. Wu, Y. Peng and P. Chen, On a conjecture of Hefetz and Keevash on Lagrangians of intersecting hypergraphs and Turán numbers . arXiv:1701.06126v3

[21] Z. Yan and Y. Peng, λ-perfect hypergraphs and Lagrangian densities of hypergraph cycles, Discrete Math. (2019). https://doi.org/10.1016/j.disc.2019.03.024

[22] A.A. Zykov, On some properties of linear complexes, Mat. Sb. 24 (1949) 163–188.