Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a20, author = {Kumar, Jakkepalli Pavan and Reddy, P. Venkata Subba}, title = {Algorithmic {Aspects} of {Secure} {Connected} {Domination} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1179--1197}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a20/} }
TY - JOUR AU - Kumar, Jakkepalli Pavan AU - Reddy, P. Venkata Subba TI - Algorithmic Aspects of Secure Connected Domination in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 1179 EP - 1197 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a20/ LA - en ID - DMGT_2021_41_4_a20 ER -
%0 Journal Article %A Kumar, Jakkepalli Pavan %A Reddy, P. Venkata Subba %T Algorithmic Aspects of Secure Connected Domination in Graphs %J Discussiones Mathematicae. Graph Theory %D 2021 %P 1179-1197 %V 41 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a20/ %G en %F DMGT_2021_41_4_a20
Kumar, Jakkepalli Pavan; Reddy, P. Venkata Subba. Algorithmic Aspects of Secure Connected Domination in Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1179-1197. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a20/
[1] P. Alimonti and V. Kann, Some APX-completeness results for cubic graphs, Theoret. Comput. Sci. 237 (2000) 123–134. https://doi.org/10.1016/S0304-3975(98)00158-3
[2] A.A. Bertossi, Dominating sets for split and bipartite graphs, Inform. Process. Lett. 19 (1984) 37–40. https://doi.org/10.1016/0020-0190(84)90126-1
[3] A. Brandstädt, V.D. Chepoi and F.F. Dragan, The algorithmic use of hypertree structure and maximum neighbourhood orderings, Discrete Appl. Math. 82 (1998) 43–77. https://doi.org/10.1016/S0166-218X(97)00125-X
[4] A.G. Cabaro, S.R. Canoy Jr and I.S. Aniversario, Secure connected domination in a graph, Int. J. Math. Anal. (Ruse) 8 (2014) 2065–2074. https://doi.org/10.12988/ijma.2014.47221
[5] M. Chlebík and J. Chlebíková, Approximation hardness of dominating set problems in bounded degree graphs, Inform. and Comput. 206 (2008) 1264–1275. https://doi.org/10.1016/j.ic.2008.07.003
[6] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19–32.
[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms (Prentice Hall, India, 2001).
[8] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inform. and Comput. 85 (1990) 12–75. https://doi.org/10.1016/0890-5401(90)90043-H
[9] A.P. De Villiers, Edge Criticality in Secure Graph Domination, Ph.D. Dissertation (Stellenbosch University, 2014).
[10] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).
[11] S. Guha and S. Khuller, Approximation algorithms for connected dominating sets, Lecture Notes in Comput. Sci. 1136 (1996) 179–193. https://doi.org/10.1007/3-540-61680-2_55
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[14] M.A. Henning and A. Pandey, Algorithmic aspects of semitotal domination in graphs, Theoret. Comput. Sci. 766 (2019) 46–57. https://doi.org/10.1016/j.tcs.2018.09.019
[15] W. Jiang, T. Liu, T. Ren and K. Xu, Two hardness results on feedback vertex sets, Lecture Note in Comput. Sci. 6681 (2011) 233–243. https://doi.org/10.1007/978-3-642-21204-8_26
[16] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations (Springer, Boston, 1972) 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9
[17] H.B. Merouane and M. Chellali, On secure domination in graphs, Inform. Process. Lett. 115 (2015) 786–790. https://doi.org/10.1016/j.ipl.2015.05.006
[18] M. Moscarini, Doubly chordal graphs, Steiner trees, and connected domination, Networks 23 (1993) 59–69. https://doi.org/10.1002/net.3230230108
[19] H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs, Theoret. Comput. Sci. 53 (1987) 257–265. https://doi.org/10.1016/0304-3975(87)90067-3
[20] B.S. Panda and A. Pandey, Algorithm and hardness results for outer-connected dominating set in graphs, J. Graph Algorithms Appl. 18 (2014) 493–513. https://doi.org/10.7155/jgaa.00334
[21] B.S. Panda, A. Pandey and S. Paul, Algorithmic aspects of b-disjunctive domination in graphs, J. Comb. Optim. 36 (2018) 572–590. https://doi.org/10.1007/s10878-017-0112-6
[22] J. Pavan Kumar, P. Venkata Subba Reddy and S. Arumugam, Algorithmic complexity of secure connected domination in graphs, AKCE Int. J. Graphs Comb. 17 (2020) 1010–1013. https://doi.org/10.1016/j.akcej.2019.08.012
[23] R. Uehara and Y. Uno, Efficient algorithms for the longest path problem, in: International Symposium on Algorithms and Computation, Lecture Notes in Comput. Sci. 3341 (2004) 871–883. https://doi.org/10.1007/978-3-540-30551-4_74
[24] H. Wang, Y. Zhao and Y. Deng, The complexity of secure domination problem in graphs, Discuss. Math. Graph Theory 38 (2018) 385–396. https://doi.org/10.7151/dmgt.2008
[25] D.B. West, An Introduction to Graph Theory, vol. 2 (Prentice Hall, Upper Saddle River, 2001).
[26] M. Yannakakis, Node-and edge-deletion NP-complete problems, in: Proc. of the Tenth Annual ACM Symposium on Theory of Computing (ACM, New York, 1978) 253–264. https://doi.org/10.1145/800133.804355