Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a19, author = {Tepeh, Aleksandra}, title = {Total {Domination} in {Generalized} {Prisms} and a {New} {Domination} {Invariant}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1165--1178}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a19/} }
TY - JOUR AU - Tepeh, Aleksandra TI - Total Domination in Generalized Prisms and a New Domination Invariant JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 1165 EP - 1178 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a19/ LA - en ID - DMGT_2021_41_4_a19 ER -
Tepeh, Aleksandra. Total Domination in Generalized Prisms and a New Domination Invariant. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1165-1178. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a19/
[1] H.A. Ahangar, J. Amjadi, N. Jafari Rad and V. Samodivkin, Total k-Rainbow domination numbers in graphs, Commun. Comb. Optim. 3 (2018) 37–50. https://doi.org/10.22049/CCO.2018.25719.1021
[2] J. Amjadi, N. Dehgardi, M. Furuya and S.M. Sheikholeslami, A sufficient condition for large rainbow domination number, Int. J. Comput. Math. Comput. Sys. Theory 2 (2017) 53–65. https://doi.org/10.1080/23799927.2017.1330282
[3] J. Azarija, M.A. Henning and S. Klavžar, ( Total ) domination in prisms, Electron. J. Combin. 24 (2017) #P1.19. https://doi.org/10.327236/6288
[4] B. Brešar, T.R. Hartinger, T. Kos and M. Milanič, On total domination in the Cartesian product of graphs, Discuss. Math. Graph Theory 38 (2018) 963–976. https://doi.org/10.7151/dmgt.2039
[5] B. Brešar, Vizing’s conjecture for graphs with domination number 3 —a new proof, Electron. J. Combin. 22 (2015) #P3.38. https://doi.org/10.37236/5182
[6] B. Brešar, Improving the Clark-Suen bound on the domination number of the Cartesian product of graphs, Discrete Math. 340 (2017) 2398–2401. https://doi.org/10.1016/j.disc.2017.05.007
[7] B. Brešar, P. Dorbec, W. Goddard, B.L. Hartnell, M.A. Henning, S. Klavžar and D.F. Rall, Vizing’s conjecture: A survey and recent results, J. Graph Theory 69 (2012) 46–76. https://doi.org/10.1002/jgt.20565
[8] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213–225. https://doi.org/10.11650/twjm/1500602498
[9] B. Brešar and T.K.Šumenjak, On the 2 -rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394–2400. https://doi.org/10.1016/j.dam.2007.07.018
[10] S. Brezovnik and T.K.Šumenjak, Complexity of k-rainbow independent domination and some results on the lexicographic product of graphs, Appl. Math. Comput. 349 (2019) 214–220. https://doi.org/10.1016/j.amc.2018.12.009
[11] K. Choudhary, S. Margulies and I.V. Hicks, A note on total and paired domination of Cartesian product graphs, Electron. J. Combin. 20 (2013) #P25. https://doi.org/10.37236/2535
[12] W. Desormeaux and M.A. Henning, Paired domination in graphs: A survey and recent results, Util. Math. 94 (2014) 101–166.
[13] W. Goddard and M.A. Henning, A note on domination and total domination in prisms, J. Comb. Optim. 35 (2018) 14–20. https://doi.org/10.1007/s10878-017-0150-0
[14] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs Combin. 21 (2005) 63–69. https://doi.org/10.1007/s00373-004-0586-8
[15] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-6525-6
[16] P.T. Ho, A note on the total domination number, Util. Math. 77 (2008) 97–100.
[17] P. Kumbargoudra and J.V. Kureethara, Total k-rainbow domination in graphs, Int. J. Civ. Eng. Technol. 8 (2017) 867–875.
[18] Y. Lu and X. Hou, Total domination in the Cartesian product of a graph and K2 or Cn, Util. Math. 83 (2010) 313–322.
[19] Z. Shao, S.M. Sheikholeslamib, B. Wang, P. Wu and X. Zhang, Trees with equal total domination and 2 -rainbow domination numbers, Filomat 32 (2018) 599–607. https://doi.org/10.2298/FIL1802599S
[20] T.K. Šumenjak, D.F. Rall and A. Tepeh, On k-rainbow independent domination in graphs, Appl. Math. Comput. 333 (2018) 353–361. https://doi.org/10.1016/j.amc.2018.03.113