Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a18, author = {Furma\'nczyk, Hanna and Zuazua, Rita}, title = {Equitable {Total} {Coloring} of {Corona} of {Cubic} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1147--1163}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a18/} }
TY - JOUR AU - Furmańczyk, Hanna AU - Zuazua, Rita TI - Equitable Total Coloring of Corona of Cubic Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 1147 EP - 1163 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a18/ LA - en ID - DMGT_2021_41_4_a18 ER -
Furmańczyk, Hanna; Zuazua, Rita. Equitable Total Coloring of Corona of Cubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1147-1163. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a18/
[1] M. Behzad, G. Chartrand and J.K. Cooper Jr, The colour numbers of complete graphs, J. Lond. Math. Soc. (2) 42 (1967) 226–228. https://doi.org/10.1112/jlms/s1-42.1.226
[2] B.L. Chen, K.W. Lih and P.L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443–447. https://doi.org/10.1006/eujc.1994.1047
[3] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Zhihe, Equitable total coloring of C m □ C n, Discrete Appl. Math. 157 (2009) 596–601. https://doi.org/10.1016/j.dam.2008.08.030
[4] S. Dantas, C.M.H. de Figueiredo, G. Mazzuoccolo, M. Preissmann, V.F. dos Santos and D. Sasaki, On the equitable total chromatic number of cubic graphs, Discrete Appl. Math. 209 (2016) 84–91. https://doi.org/10.1016/j.dam.2015.10.013
[5] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–325. https://doi.org/10.1007/BF01844162
[6] H.L. Fu, Some results on equalized total coloring, Congr. Numer. 102 (1994) 111–119.
[7] H. Furmańczyk, Equitable coloring of graphs, in: Graph Colorings, M. Kubale (Ed(s)), (Amer. Math. Soc. 352, 2004) 35–53. https://doi.org/10.1090/conm/352/03
[8] H. Furmańczyk, Equitable coloring of graph products, Opuscula Math. 26 (2006) 31–44.
[9] H. Furmańczyk and M. Kubale, Equitable coloring of corona products of cubic graphs is harder than ordinary coloring, Ars Math. Contemp. 10 (2016) 333–347. https://doi.org/10.26493/1855-3974.687.99b
[10] H. Gui, W. Wang, Y. Wang and Z. Zhang, Equitable total-coloring of subcubic graphs, Discrete Appl. Math. 184 (2015) 167–170. https://doi.org/10.1016/j.dam.2014.11.014
[11] P. Hall, On representatives of subsets, J. London Math. Soc. (2) 10 (1935) 26– 30. https://doi.org/10.1112/jlms/s1-10.37.26
[12] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920–922. https://doi.org/10.1080/00029890.1973.11993408
[13] A. Sánchez-Arroyo, Determining the total colouring number is NP-hard, Discrete Math. 78 (1989) 315–319. https://doi.org/10.1016/0012-365X(89)90187-8
[14] W.-F. Wang, Equitable total coloring of graphs with maximum degree 3, Graphs Combin. 18 (2002) 677–685. https://doi.org/10.1007/s003730200051
[15] N. Vijayaditya, On total chromatic number of a graph, J. London Math. Soc. 2 (1971) 405–408. https://doi.org/10.1112/jlms/s2-3.3.405
[16] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz. 3 (1964) 25–30.
[17] W. Wang and K. Zhang, Equitable colorings of line graphs and complete r-partite graphs, Systems Sci. Math. Sci. 13 (2000) 190–194.