Equitable Total Coloring of Corona of Cubic Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1147-1163.

Voir la notice de l'article provenant de la source Library of Science

The minimum number of total independent partition sets of V∪E of a graph G = (V, E) is called the total chromatic number of G, denoted by χ'′(G). If the difference between cardinalities of any two total independent sets is at most one, then the minimum number of total independent partition sets of V∪E is called the equitable total chromatic number, and is denoted by χ'′=(G). In this paper we consider equitable total coloring of coronas of cubic graphs, G◦H. It turns out that independently on the values of equitable total chromatic number of factors G and H, equitable total chromatic number of corona G◦H is equal to Δ(G◦H)+1. Thereby, we confirm Total Coloring Conjecture (TCC), posed by Behzad in 1964, and Equitable Total Coloring Conjecture (ETCC), posed by Wang in 2002, for coronas of cubic graphs. As a direct consequence we get that all coronas of cubic graphs are of Type 1.
Keywords: equitable coloring, total coloring, equitable total coloring, cubic graphs
@article{DMGT_2021_41_4_a18,
     author = {Furma\'nczyk, Hanna and Zuazua, Rita},
     title = {Equitable {Total} {Coloring} of {Corona} of {Cubic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1147--1163},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a18/}
}
TY  - JOUR
AU  - Furmańczyk, Hanna
AU  - Zuazua, Rita
TI  - Equitable Total Coloring of Corona of Cubic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 1147
EP  - 1163
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a18/
LA  - en
ID  - DMGT_2021_41_4_a18
ER  - 
%0 Journal Article
%A Furmańczyk, Hanna
%A Zuazua, Rita
%T Equitable Total Coloring of Corona of Cubic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 1147-1163
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a18/
%G en
%F DMGT_2021_41_4_a18
Furmańczyk, Hanna; Zuazua, Rita. Equitable Total Coloring of Corona of Cubic Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1147-1163. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a18/

[1] M. Behzad, G. Chartrand and J.K. Cooper Jr, The colour numbers of complete graphs, J. Lond. Math. Soc. (2) 42 (1967) 226–228. https://doi.org/10.1112/jlms/s1-42.1.226

[2] B.L. Chen, K.W. Lih and P.L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443–447. https://doi.org/10.1006/eujc.1994.1047

[3] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Zhihe, Equitable total coloring of C m □ C n, Discrete Appl. Math. 157 (2009) 596–601. https://doi.org/10.1016/j.dam.2008.08.030

[4] S. Dantas, C.M.H. de Figueiredo, G. Mazzuoccolo, M. Preissmann, V.F. dos Santos and D. Sasaki, On the equitable total chromatic number of cubic graphs, Discrete Appl. Math. 209 (2016) 84–91. https://doi.org/10.1016/j.dam.2015.10.013

[5] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–325. https://doi.org/10.1007/BF01844162

[6] H.L. Fu, Some results on equalized total coloring, Congr. Numer. 102 (1994) 111–119.

[7] H. Furmańczyk, Equitable coloring of graphs, in: Graph Colorings, M. Kubale (Ed(s)), (Amer. Math. Soc. 352, 2004) 35–53. https://doi.org/10.1090/conm/352/03

[8] H. Furmańczyk, Equitable coloring of graph products, Opuscula Math. 26 (2006) 31–44.

[9] H. Furmańczyk and M. Kubale, Equitable coloring of corona products of cubic graphs is harder than ordinary coloring, Ars Math. Contemp. 10 (2016) 333–347. https://doi.org/10.26493/1855-3974.687.99b

[10] H. Gui, W. Wang, Y. Wang and Z. Zhang, Equitable total-coloring of subcubic graphs, Discrete Appl. Math. 184 (2015) 167–170. https://doi.org/10.1016/j.dam.2014.11.014

[11] P. Hall, On representatives of subsets, J. London Math. Soc. (2) 10 (1935) 26– 30. https://doi.org/10.1112/jlms/s1-10.37.26

[12] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920–922. https://doi.org/10.1080/00029890.1973.11993408

[13] A. Sánchez-Arroyo, Determining the total colouring number is NP-hard, Discrete Math. 78 (1989) 315–319. https://doi.org/10.1016/0012-365X(89)90187-8

[14] W.-F. Wang, Equitable total coloring of graphs with maximum degree 3, Graphs Combin. 18 (2002) 677–685. https://doi.org/10.1007/s003730200051

[15] N. Vijayaditya, On total chromatic number of a graph, J. London Math. Soc. 2 (1971) 405–408. https://doi.org/10.1112/jlms/s2-3.3.405

[16] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz. 3 (1964) 25–30.

[17] W. Wang and K. Zhang, Equitable colorings of line graphs and complete r-partite graphs, Systems Sci. Math. Sci. 13 (2000) 190–194.