Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a17, author = {Polat, Norbert}, title = {On {Antipodal} and {Diametrical} {Partial} {Cubes}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1127--1145}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a17/} }
Polat, Norbert. On Antipodal and Diametrical Partial Cubes. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1127-1145. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a17/
[1] K. Balakrishnan, B. Brešar, M. Changat, S. Klavžar, I. Peterin and A.R. Subhamathi, Almost self-centered median and chordal graphs, Taiwanese J. Math. 16 (2012) 1911–1922. https://doi.org/10.11650/twjm/1500406804
[2] V. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity, Cybernet. Systems Anal. 24 (1988) 6–11. https://doi.org/10.1007/BF01069520
[3] J. Desharnais, Maille et Plongements de Graphes Antipodaux (Mémoire de Maitrise, Université de Montréal, 1993).
[4] D.Ž. Djoković, Distance-preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263–267. https://doi.org/10.1016/0095-8956(73)90010-5
[5] V.V. Firsov, Isometric embedding of a graph in a Boolean cube, Cybernet. System Anal. 1 (1965) 112–113. https://doi.org/10.1007/BF01074705
[6] K. Fukuda and K. Handa, Antipodal graphs and oriented matroids, Discrete Math. 111 (1993) 245–256. https://doi.org/10.1016/0012-365X(93)90159-Q
[7] F. Glivjak, A. Kotzig and J. Plesnik, Remarks on graphs with a central symmetry, Monatsh. Math. 74 (1970) 302–307. https://doi.org/10.1007/BF01302697
[8] F. Göbel and H.J. Veldman, Even graphs, J. Graph Theory 10 (1986) 225–239. https://doi.org/10.1002/jgt.3190100212
[9] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, 2011). https://doi.org/10.1201/b10959
[10] K. Handa, Bipartite graphs with balanced ( a, b ) -partitions, Ars Combin. 51 (1999) 113–119.
[11] S. Klavžar and M. Kovše, On even and harmonic-even partial cubes, Ars Combin. 93 (2009) 77–86.
[12] K. Knauer and T. Marc, On tope graphs of complexes of oriented matroids (2017). arXiv:1701.05525
[13] A. Kotzig, Centrally symmetric graphs, Czechoslovak Math. J. 18 (1968) 605–615, in Russian.
[14] A. Kotzig and P. Laufer, Generalized S-graphs, preprint CRM-779, Centre de Recherches Mathématiques (Université de Montréal, 1978).
[15] T. Marc, There are no finite partial cubes of girth more than 6 and minimum degree at least 3, European J. Combin. 55 (2016) 62–72. https://doi.org/10.1016/j.ejc.2016.01.005
[16] H.M. Mulder, n-cubes and median graphs, J. Graph Theory 4 (1980) 107–110. https://doi.org/10.1002/jgt.3190040112
[17] K.R. Parthasarathy and R. Nandakumar, Unique eccentric point graphs, Discrete Math. 46 (1983) 69–74. https://doi.org/10.1016/0012-365X(83)90271-6
[18] N. Polat, On some characterizations of antipodal partial cubes, Discuss. Math. Graph Theory 39 (2019) 439–453. https://doi.org/10.7151/dmgt.2083
[19] G. Sabidussi, Graphs without dead ends, European J. Combin. 17 (1996) 69–87. https://doi.org/10.1006/eujc.1996.0006
[20] P.M. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221–225. https://doi.org/10.1016/0166-218X(84)90069-6