On Antipodal and Diametrical Partial Cubes
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1127-1145

Voir la notice de l'article provenant de la source Library of Science

We prove that any diametrical partial cube of diameter at most 6 is antipodal. Because any antipodal graph is harmonic, this gives a partial answer to a question of Fukuda and Handa [Antipodal graphs and oriented matroids, Discrete Math. 111 (1993) 245–256] whether any diametrical partial cube is harmonic, and improves a previous result of Klavžar and Kovše [On even and harmonic-even partial cubes, Ars Combin. 93 (2009) 77–86].
Keywords: diametrical graph, harmonic graph, antipodal graph, partial cube, diameter, isometric dimension
@article{DMGT_2021_41_4_a17,
     author = {Polat, Norbert},
     title = {On {Antipodal} and {Diametrical} {Partial} {Cubes}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1127--1145},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a17/}
}
TY  - JOUR
AU  - Polat, Norbert
TI  - On Antipodal and Diametrical Partial Cubes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 1127
EP  - 1145
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a17/
LA  - en
ID  - DMGT_2021_41_4_a17
ER  - 
%0 Journal Article
%A Polat, Norbert
%T On Antipodal and Diametrical Partial Cubes
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 1127-1145
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a17/
%G en
%F DMGT_2021_41_4_a17
Polat, Norbert. On Antipodal and Diametrical Partial Cubes. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1127-1145. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a17/