Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a16, author = {Jajcay, Robert and Raiman, Tom}, title = {Spectra of {Orders} for {k-Regular} {Graphs} of {Girth} g}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1115--1125}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a16/} }
Jajcay, Robert; Raiman, Tom. Spectra of Orders for k-Regular Graphs of Girth g. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1115-1125. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a16/
[1] E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci., Univ. Tokyo, Sect. I A 20 (1973) 191–208.
[2] E. Bannai and T. Ito, Regular graphs with excess one, Discrete Math. 37 (1981) 147–158. https://doi.org/10.1016/0012-365X(81)90215-6
[3] R.M. Damerell, On Moore graphs, Proc. Camb. Philos. Soc. 74 (1973) 227–236. https://doi.org/10.1017/S0305004100048015
[4] P. Erdős and H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 12 (1963) 251–258.
[5] G. Exoo and R. Jajcay, Dynamic cage survey, Electron. J. Combin. (2008) DS16.
[6] F. Garbe, On graphs with excess or defect 2, Discrete Appl. Math. 180 (2015) 81–88. https://doi.org/10.1016/j.dam.2014.07.022
[7] T.B. Jajcayová, S. Filipovski and R. Jajcay, Counting cycles in graphs with small excess, Lect. Notes Semin. Interdiscip. Mat. (2017) 17–36.
[8] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (1999) 137–146. https://doi.org/10.1002/(SICI)1097-0118(199902)30:2¡137::AID-JGT7¿3.0.CO;2-G
[9] M. Meringer, Fast generation of regular graphs and construction of cages . http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
[10] H. Sachs, Regular graphs with given girth and restricted circuits, J. Lond. Math. Soc. 38 (1963) 423–429. https://doi.org/10.1112/jlms/s1-38.1.423
[11] N. Sauer, Extremaleigenschaften regulärer Graphen gegebener Taillenweite I. and II., Österr. Akad. Wiss., Math.-Naturw. Kl., S.-Ber., Abt. II 176 (1968) 9–25, 27–43.