Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a14, author = {Mudrock, Jeffrey A. and Chase, Madelynn and Thornburgh, Ezekiel and Kadera, Isaac and Wagstrom, Tim}, title = {A {Note} on the {Equitable} {Choosability} of {Complete} {Bipartite} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1091--1101}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a14/} }
TY - JOUR AU - Mudrock, Jeffrey A. AU - Chase, Madelynn AU - Thornburgh, Ezekiel AU - Kadera, Isaac AU - Wagstrom, Tim TI - A Note on the Equitable Choosability of Complete Bipartite Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 1091 EP - 1101 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a14/ LA - en ID - DMGT_2021_41_4_a14 ER -
%0 Journal Article %A Mudrock, Jeffrey A. %A Chase, Madelynn %A Thornburgh, Ezekiel %A Kadera, Isaac %A Wagstrom, Tim %T A Note on the Equitable Choosability of Complete Bipartite Graphs %J Discussiones Mathematicae. Graph Theory %D 2021 %P 1091-1101 %V 41 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a14/ %G en %F DMGT_2021_41_4_a14
Mudrock, Jeffrey A.; Chase, Madelynn; Thornburgh, Ezekiel; Kadera, Isaac; Wagstrom, Tim. A Note on the Equitable Choosability of Complete Bipartite Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1091-1101. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a14/
[1] B.-L. Chen, K.-W. Lih and P.-L. Wu, Equitable coloring and the maximum degree, European. J. Combin. 15 (1994) 443–447. https://doi.org/10.1006/eujc.1994.1047
[2] A. Dong and J. Wu, Equitable coloring and equitable choosability of planar graphs without chordal 4 - and 6 -cycles (2018). arXiv:1806.01064
[3] A. Dong and X. Zhang, Equitable coloring and equitable choosability of graphs with small maximum average degree, Discuss. Math. Graph Theory 38 (2018) 829–839. https://doi.org/10.7151/dmgt.2049
[4] E. Drgas-Burchardt, J. Dybizbański, H. Furmańczyk and E. Sidorowicz, Equitable list vertex colourability and arboricity of grids, Filomat. 32 (2018) 6353–6374. https://doi.org/10.2298/FIL1818353D
[5] P. Erdős, Problem 9, in: M. Fiedler (Ed.), Theory of Graphs and Its Applications, Proc. Sympos., Smolenice, 1963, Publ. House Czechoslovak Acad. Sci. Prague (1964) 159.
[6] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125–127.
[7] A. Hajnál and E. Szemerédi, Proof of a conjecture of Erd˝os, in: A Rényi and V.T. Sós, (Eds), Combin. Theory Appl. II (North-Holland, Amsterdam, 1970) 601–623.
[8] S. Janson and A. Ruciński, The infamous upper tail, Random Structures Algorithms 20 (2002) 317–342. https://doi.org/10.1002/rsa.10031
[9] H. Kaul and S.H. Jacobson, New global optima results for the Kau man NK model: handling dependency, Math. Program. 108 (2006) 475–494. https://doi.org/10.1007/s10107-006-0719-3
[10] H. Kaul, J.A. Mudrock and M.J. Pelsmajer, Total equitable list coloring, Graphs Combin. 34 (2018) 1637–1649. https://doi.org/10.1007/s00373-018-1965-x
[11] H. Kaul, J.A. Mudrock, M.J. Pelsmajer and B. Reiniger, Proportional choosability: a new list analogue of equitable coloring, Discrete Math. 342 (2019) 2371–2383. https://doi.org/10.1016/j.disc.2019.05.011
[12] H.A. Kierstead and A.V. Kostochka, Equitable list coloring of graphs with bounded degree, J. Graph Theory 74 (2013) 309–334. https://doi.org/10.1002/jgt.21710
[13] A.V. Kostochka, M.J. Pelsmajer and D.B. West, A list analogue of equitable coloring, J. Graph Theory 44 (2003) 166–177. https://doi.org/10.1002/jgt.10137
[14] Q. Li and Y. Bu, Equitable list coloring of planar graphs without 4 - and 6 -cycles, Discrete Math. 309 (2009) 280–287. https://doi.org/10.1016/j.disc.2007.12.070
[15] K.-W. Lih, The equitable coloring of graphs, in: D.-Z. Du and P. Pardalos (Eds), Handbook of Combinatorial Optimization III (Kluwer, Dordrecht, 1998) 543–566. https://doi.org/10.1007/978-1-4613-0303-9_31
[16] K.-W. Lih and P.-L. Wu, On equitable coloring of bipartite graphs, Discrete Math. 151 (1996) 155–160. https://doi.org/10.1016/0012-365X(94)00092-W
[17] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920–922. https://doi.org/10.1080/00029890.1973.11993408
[18] S.V. Pemmaraju, Equitable colorings extend Cherno -Hoe ding bounds, in: Proceedings of the 5th International Workshop on Randomization and Approximation Techniques in Computer Science (2001) 285–296.
[19] A. Tucker, Perfect graphs and an application to optimizing municipal services, SIAM Review 15 (1973) 585–590. https://doi.org/10.1137/1015072
[20] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz. 29, Metody Diskret. Anal. v Teorii Kodovi Skhem 101 (1976) 3–10.
[21] D.B. West, Introduction to Graph Theory (Upper Saddle River, NJ, Prentice Hall, 2001).
[22] H.P. Yap and Y. Zhang, The equitable -coloring conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sinica 25 (1997) 143–149.
[23] X. Zhang and J.-L. Wu, On equitable and equitable list colorings of series-parallel graphs, Discrete Math. 311 (2011) 800–803. https://doi.org/10.1016/j.disc.2011.02.001
[24] J. Zhu and Y. Bu, Equitable list coloring of planar graphs without short cycles, Theoret. Comput. Sci. 407 (2008) 21–28. https://doi.org/10.1016/j.tcs.2008.04.018
[25] J. Zhu and Y. Bu, Equitable and equitable list colorings of graphs, Theoret. Comput. Sci. 411 (2010) 3873-3876. https://doi.org/10.1016/j.tcs.2010.06.027
[26] J. Zhu, Y. Bu and X. Min, Equitable list-coloring for C5-free plane graphs without adjacent triangles, Graphs Combin. 31 (2015) 795–804. https://doi.org/10.1007/s00373-013-1396-7