On the Isometric Path Partition Problem
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1077-1089

Voir la notice de l'article provenant de la source Library of Science

The isometric path cover (partition) problem of a graph consists of finding a minimum set of isometric paths which cover (partition) the vertex set of the graph. The isometric path cover (partition) number of a graph is the cardinality of a minimum isometric path cover (partition). We prove that the isometric path partition problem and the isometric k-path partition problem for k 3 are NP-complete on general graphs. Fisher and Fitzpatrick in [The isometric number of a graph, J. Combin. Math. Combin. Comput. 38 (2001) 97–110] have shown that the isometric path cover number of the (r × r)-dimensional grid is ⌈2r/3 ⌉. We show that the isometric path cover (partition) number of the (r × s)-dimensional grid is s when r s(s − 1). We establish that the isometric path cover (partition) number of the (r × r)-dimensional torus is r when r is even and is either r or r + 1 when r is odd. Then, we demonstrate that the isometric path cover (partition) number of an r-dimensional Benes network is 2r. In addition, we provide partial solutions for the isometric path cover (partition) problems for cylinder and multi-dimensional grids. We apply two di erent techniques to achieve these results.
Keywords: path cover problem, isometric path partition problem, isometric path cover problem, multi-dimensional grids, cylinder, torus
@article{DMGT_2021_41_4_a13,
     author = {Manuel, Paul},
     title = {On the {Isometric} {Path} {Partition} {Problem}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1077--1089},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a13/}
}
TY  - JOUR
AU  - Manuel, Paul
TI  - On the Isometric Path Partition Problem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 1077
EP  - 1089
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a13/
LA  - en
ID  - DMGT_2021_41_4_a13
ER  - 
%0 Journal Article
%A Manuel, Paul
%T On the Isometric Path Partition Problem
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 1077-1089
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a13/
%G en
%F DMGT_2021_41_4_a13
Manuel, Paul. On the Isometric Path Partition Problem. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 1077-1089. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a13/