Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a1, author = {Shahsavaran, Mohsen and Darafsheh, Mohammad Reza}, title = {On {Semisymmetric} {Cubic} {Graphs} of {Order} 20p\protect\textsuperscript{2}, p {Prime}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {873--891}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/} }
TY - JOUR AU - Shahsavaran, Mohsen AU - Darafsheh, Mohammad Reza TI - On Semisymmetric Cubic Graphs of Order 20p2, p Prime JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 873 EP - 891 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/ LA - en ID - DMGT_2021_41_4_a1 ER -
Shahsavaran, Mohsen; Darafsheh, Mohammad Reza. On Semisymmetric Cubic Graphs of Order 20p2, p Prime. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 873-891. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/
[1] M. Alaeiyan and M. Ghasemi, Cubic edge-transitive graphs of order 8p2, Bull. Aust. Math. Soc. 77 (2008) 315–323. https://doi.org/10.1017/S0004972708000361
[2] M. Alaeiyan and B.N. Onagh, Cubic edge-transitive graphs of order 4p2, Acta Math. Univ. Comenian. LXXVIII (2009) 183–186.
[3] M. Alaeiyan and B.N. Onagh, On semisymmetric cubic graphs of order 10p3, Hacet. J. Math. Stat. 40 (2011) 531–535.
[4] Y. Bugeand, Z. Cao and M. Mignotte, On simple K4-groups, J. Algebra 241 (2001) 658–668. https://doi.org/10.1006/jabr.2000.8742
[5] G. Butler and J. McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983) 863–911. https://doi.org/10.1080/00927878308822884
[6] M. Conder, A. Malnič, D. Marušič and P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23 (2006) 255–294. https://doi.org/10.1007/s10801-006-7397-3
[7] M. Conder and R. Nedela, A refined classification of symmetric cubic graphs, J. Algebra 322 (2009) 722–740. https://doi.org/10.1016/j.jalgebra.2009.03.011
[8] Y. Feng, M. Ghasemi and W. Changqun, Cubic semisymmetric graphs of order 6p3, Discrete Math. 310 (2010) 2345–2355. https://doi.org/10.1016/j.disc.2010.05.018
[9] J. Folkman, Regular line-symmetric graphs, J. Combin. Theory 3 (1967) 215–232. https://doi.org/10.1016/S0021-9800(67)80069-3
[10] D.M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. 111 (1980) 377–406. https://doi.org/10.2307/1971203
[11] H. Han and Z. Lu, Semisymmetric graphs of order 6p2 and prime valency, Sci. China Math. 55 (2012) 2579–2592. https://doi.org/10.1007/s11425-012-4424-9
[12] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra 120 (1968) 383–388. https://doi.org/10.1016/0021-8693(68)90088-4
[13] X. Hua and Y. Feng, Cubic semisymmetric graphs of order 8p3, Sci. China Math. 54 (2011) 1937–1949. https://doi.org/10.1007/s11425-011-4261-2
[14] J.H. Kwak and R. Nedela, Graphs and their Coverings (Lecture Notes Series No. 17, Combinatorial and Computational Mathematics Center, POSTECH, Pohang, Korea, 2005).
[15] Z. Lu, C. Wang and M. Xu, On semisymmetric cubic graphs of order 6p2, Sci. China Ser. A Math. 47 (2004) 1–17. https://doi.org/10.1360/02ys0241
[16] A. Malnič, D. Marušič and C. Wang, Cubic Semisymmetric Graphs of Order 2p3 (University of Ljubljana, Preprint Series, Vol. 38, 2000).
[17] A. Malnič, D. Marušič and C. Wang, Cubic edge-transitive graphs of order 2p3, Discrete Math. 274 (2004) 187–198. https://doi.org/10.1016/S0012-365X(03)00088-8
[18] D.J. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, 1982). https://doi.org/10.1007/978-1-4684-0128-8
[19] J.S. Rose, A Course On Group Theory (Cambridge University Press, 1978).
[20] W.J. Shi, On simple K4-groups, Chinese Sci. Bull. 36 (1991) 1281–1283.
[21] M. Suzuki, Group Theory (Springer-Verlag, New York, 1986).
[22] A.A. Talebi and N. Mehdipoor, Classifying cubic semisymmetric graphs of order 18pn, Graphs Combin. 30 (2014) 1037–1044. https://doi.org/10.1007/s00373-013-1318-8
[23] W.T. Tutte, Connectivity in Graphs (University of Toronto Press, Toronto, 1966).
[24] C.Q. Wang and T.S. Chen, Semisymmetric cubic graphs as regular covers of K3,3, Acta Math. Sin. (Engl. Ser.) 24 (2008) 405–416. https://doi.org/10.1007/s10114-007-0998-5
[25] S. Zhang and W.J. Shi, Revisiting the number of simple K4-groups (2013). arXiv: 1307.8079v1 [math.NT]