On Semisymmetric Cubic Graphs of Order 20p2, p Prime
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 873-891.

Voir la notice de l'article provenant de la source Library of Science

A simple graph is called semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let p be an arbitrary prime. Folkman proved [Regular line-symmetric graphs, J. Combin. Theory 3 (1967) 215–232] that there is no semisymmetric graph of order 2p or 2p2. In this paper an extension of his result in the case of cubic graphs of order 20p2 is given. We prove that there is no connected cubic semisymmetric graph of order 20p2 or, equivalently, that every connected cubic edge-transitive graph of order 20p2 is necessarily symmetric.
Keywords: edge-transitive graph, vertex-transitive graph, semisymmetric graph, order of a graph, classification of cubic semisymmetric graphs
@article{DMGT_2021_41_4_a1,
     author = {Shahsavaran, Mohsen and Darafsheh, Mohammad Reza},
     title = {On {Semisymmetric} {Cubic} {Graphs} of {Order} 20p\protect\textsuperscript{2}, p {Prime}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {873--891},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/}
}
TY  - JOUR
AU  - Shahsavaran, Mohsen
AU  - Darafsheh, Mohammad Reza
TI  - On Semisymmetric Cubic Graphs of Order 20p2, p Prime
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 873
EP  - 891
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/
LA  - en
ID  - DMGT_2021_41_4_a1
ER  - 
%0 Journal Article
%A Shahsavaran, Mohsen
%A Darafsheh, Mohammad Reza
%T On Semisymmetric Cubic Graphs of Order 20p2, p Prime
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 873-891
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/
%G en
%F DMGT_2021_41_4_a1
Shahsavaran, Mohsen; Darafsheh, Mohammad Reza. On Semisymmetric Cubic Graphs of Order 20p2, p Prime. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 873-891. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/

[1] M. Alaeiyan and M. Ghasemi, Cubic edge-transitive graphs of order 8p2, Bull. Aust. Math. Soc. 77 (2008) 315–323. https://doi.org/10.1017/S0004972708000361

[2] M. Alaeiyan and B.N. Onagh, Cubic edge-transitive graphs of order 4p2, Acta Math. Univ. Comenian. LXXVIII (2009) 183–186.

[3] M. Alaeiyan and B.N. Onagh, On semisymmetric cubic graphs of order 10p3, Hacet. J. Math. Stat. 40 (2011) 531–535.

[4] Y. Bugeand, Z. Cao and M. Mignotte, On simple K4-groups, J. Algebra 241 (2001) 658–668. https://doi.org/10.1006/jabr.2000.8742

[5] G. Butler and J. McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983) 863–911. https://doi.org/10.1080/00927878308822884

[6] M. Conder, A. Malnič, D. Marušič and P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23 (2006) 255–294. https://doi.org/10.1007/s10801-006-7397-3

[7] M. Conder and R. Nedela, A refined classification of symmetric cubic graphs, J. Algebra 322 (2009) 722–740. https://doi.org/10.1016/j.jalgebra.2009.03.011

[8] Y. Feng, M. Ghasemi and W. Changqun, Cubic semisymmetric graphs of order 6p3, Discrete Math. 310 (2010) 2345–2355. https://doi.org/10.1016/j.disc.2010.05.018

[9] J. Folkman, Regular line-symmetric graphs, J. Combin. Theory 3 (1967) 215–232. https://doi.org/10.1016/S0021-9800(67)80069-3

[10] D.M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. 111 (1980) 377–406. https://doi.org/10.2307/1971203

[11] H. Han and Z. Lu, Semisymmetric graphs of order 6p2 and prime valency, Sci. China Math. 55 (2012) 2579–2592. https://doi.org/10.1007/s11425-012-4424-9

[12] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra 120 (1968) 383–388. https://doi.org/10.1016/0021-8693(68)90088-4

[13] X. Hua and Y. Feng, Cubic semisymmetric graphs of order 8p3, Sci. China Math. 54 (2011) 1937–1949. https://doi.org/10.1007/s11425-011-4261-2

[14] J.H. Kwak and R. Nedela, Graphs and their Coverings (Lecture Notes Series No. 17, Combinatorial and Computational Mathematics Center, POSTECH, Pohang, Korea, 2005).

[15] Z. Lu, C. Wang and M. Xu, On semisymmetric cubic graphs of order 6p2, Sci. China Ser. A Math. 47 (2004) 1–17. https://doi.org/10.1360/02ys0241

[16] A. Malnič, D. Marušič and C. Wang, Cubic Semisymmetric Graphs of Order 2p3 (University of Ljubljana, Preprint Series, Vol. 38, 2000).

[17] A. Malnič, D. Marušič and C. Wang, Cubic edge-transitive graphs of order 2p3, Discrete Math. 274 (2004) 187–198. https://doi.org/10.1016/S0012-365X(03)00088-8

[18] D.J. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, 1982). https://doi.org/10.1007/978-1-4684-0128-8

[19] J.S. Rose, A Course On Group Theory (Cambridge University Press, 1978).

[20] W.J. Shi, On simple K4-groups, Chinese Sci. Bull. 36 (1991) 1281–1283.

[21] M. Suzuki, Group Theory (Springer-Verlag, New York, 1986).

[22] A.A. Talebi and N. Mehdipoor, Classifying cubic semisymmetric graphs of order 18pn, Graphs Combin. 30 (2014) 1037–1044. https://doi.org/10.1007/s00373-013-1318-8

[23] W.T. Tutte, Connectivity in Graphs (University of Toronto Press, Toronto, 1966).

[24] C.Q. Wang and T.S. Chen, Semisymmetric cubic graphs as regular covers of K3,3, Acta Math. Sin. (Engl. Ser.) 24 (2008) 405–416. https://doi.org/10.1007/s10114-007-0998-5

[25] S. Zhang and W.J. Shi, Revisiting the number of simple K4-groups (2013). arXiv: 1307.8079v1 [math.NT]