On Semisymmetric Cubic Graphs of Order 20p2, p Prime
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 873-891

Voir la notice de l'article provenant de la source Library of Science

A simple graph is called semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let p be an arbitrary prime. Folkman proved [Regular line-symmetric graphs, J. Combin. Theory 3 (1967) 215–232] that there is no semisymmetric graph of order 2p or 2p2. In this paper an extension of his result in the case of cubic graphs of order 20p2 is given. We prove that there is no connected cubic semisymmetric graph of order 20p2 or, equivalently, that every connected cubic edge-transitive graph of order 20p2 is necessarily symmetric.
Keywords: edge-transitive graph, vertex-transitive graph, semisymmetric graph, order of a graph, classification of cubic semisymmetric graphs
@article{DMGT_2021_41_4_a1,
     author = {Shahsavaran, Mohsen and Darafsheh, Mohammad Reza},
     title = {On {Semisymmetric} {Cubic} {Graphs} of {Order} 20p\protect\textsuperscript{2}, p {Prime}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {873--891},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/}
}
TY  - JOUR
AU  - Shahsavaran, Mohsen
AU  - Darafsheh, Mohammad Reza
TI  - On Semisymmetric Cubic Graphs of Order 20p2, p Prime
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 873
EP  - 891
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/
LA  - en
ID  - DMGT_2021_41_4_a1
ER  - 
%0 Journal Article
%A Shahsavaran, Mohsen
%A Darafsheh, Mohammad Reza
%T On Semisymmetric Cubic Graphs of Order 20p2, p Prime
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 873-891
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/
%G en
%F DMGT_2021_41_4_a1
Shahsavaran, Mohsen; Darafsheh, Mohammad Reza. On Semisymmetric Cubic Graphs of Order 20p2, p Prime. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 873-891. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a1/