Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_4_a0, author = {Balbuena, Camino and Dalf\'o, Cristina and Mart{\'\i}nez-Barona, Berenice}, title = {Sufficient {Conditions} for a {Digraph} to {Admit} {A} (1, \ensuremath{\leq} {\ensuremath{\ell})-Identifying} {Code}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {853--872}, publisher = {mathdoc}, volume = {41}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a0/} }
TY - JOUR AU - Balbuena, Camino AU - Dalfó, Cristina AU - Martínez-Barona, Berenice TI - Sufficient Conditions for a Digraph to Admit A (1, ≤ ℓ)-Identifying Code JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 853 EP - 872 VL - 41 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a0/ LA - en ID - DMGT_2021_41_4_a0 ER -
%0 Journal Article %A Balbuena, Camino %A Dalfó, Cristina %A Martínez-Barona, Berenice %T Sufficient Conditions for a Digraph to Admit A (1, ≤ ℓ)-Identifying Code %J Discussiones Mathematicae. Graph Theory %D 2021 %P 853-872 %V 41 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a0/ %G en %F DMGT_2021_41_4_a0
Balbuena, Camino; Dalfó, Cristina; Martínez-Barona, Berenice. Sufficient Conditions for a Digraph to Admit A (1, ≤ ℓ)-Identifying Code. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 4, pp. 853-872. http://geodesic.mathdoc.fr/item/DMGT_2021_41_4_a0/
[1] G. Araujo-Pardo, C. Balbuena, L. Montejano and J.C. Valenzuela, Partial linear spaces and identifying codes, European J. Combin. 32 (2011) 344–351. https://doi.org/10.1016/j.ejc.2010.10.014
[2] C. Balbuena, C. Dalfó and B. Martínez-Barona, Characterizing identifying codes from the spectrum of a graph or digraph, Linear Algebra Appl. 570 (2019) 138–147. https://doi.org/10.1016/j.laa.2019.02.010
[3] C. Balbuena, F. Foucaud and A. Hansberg, Locating-dominating sets and identifying codes in graphs of girth at least 5, Electron. J. Combin. 22 (2) (2015) #P2.15. https://doi.org/10.37236/4562
[4] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer-Verlag, London, 2007). https://doi.org/10.1007/978-1-84800-998-1
[5] N. Bertrand, I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes on chains and cycles, European J. Combin. 25 (2004) 969–987. https://doi.org/10.1016/j.ejc.2003.12.013
[6] I. Charon, G. Cohen, O. Hudry and A. Lobstein, New identifying codes in the binary Hamming space, European J. Combin. 31 (2010) 491–501. https://doi.org/10.1016/j.ejc.2009.03.032
[7] I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes: NP-completeness results for directed graphs, IEEE Trans. Inform. Theory 48 (2002) 2192–2200. https://doi.org/10.1109/TIT.2002.800490
[8] I. Charon, S. Gravier, O. Hudry, A. Lobstein, M. Mollard and J. Moncel, A linear algorithm for minimum 1 -identifying codes in oriented trees, Discrete Appl. Math. 154 (2006) 1246–1253. https://doi.org/10.1016/j.dam.2005.11.007
[9] G. Exoo, V. Junnila, T. Laihonen and S. Ranto, Upper bounds for binary identifying codes, Adv. Appl. Math. 42 (2009) 277–289. https://doi.org/10.1016/j.aam.2008.06.004
[10] G. Exoo, V. Junnila, T. Laihonen and S. Ranto, Improved bounds on identifying codes in binary Hamming spaces, European J. Combin. 31 (2010) 813–827. https://doi.org/10.1016/j.ejc.2009.09.002
[11] F. Foucaud, R. Naserasr and A. Parreau, Characterizing extremal digraphs for identifying codes and extremal cases of Bondy’s Theorem on induced subsets, Graphs Combin. 29 (2013) 463–473. https://doi.org/10.1007/s00373-012-1136-4
[12] A. Frieze, R. Martin, J. Moncel, M. Ruszinkó and C. Smyth, Codes identifying sets of vertices in random networks, Discrete Math. 307 (2007) 1094–1107. https://doi.org/10.1016/j.disc.2006.07.041
[13] S. Gravier and J. Moncel, Construction of codes identifying sets of vertices, Electron. J. Combin. 12 (2005) #R13. https://doi.org/10.37236/1910
[14] S. Gravier, A. Parreau, S. Rottey, L. Storme and E. Vandomme, Identifying codes in vertex-transitive graphs and strongly regular graphs, Electron. J. Combin. 22 (2015) #P4.6. https://doi.org/10.37236/5256
[15] I. Honkala and T. Laihonen, On identifying codes in the king grid that are robust against edge deletions, Electron. J. Combin. 15 (2008) #R3. https://doi.org/10.37236/727
[16] M. Karpovsky, K. Chakrabarty and L. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599–611. https://doi.org/10.1109/18.661507
[17] T. Laihonen, On cages admitting identifying codes, European J. Combin. 29 (2008) 737–741. https://doi.org/10.1016/j.ejc.2007.02.016
[18] T. Laihonen and S. Ranto, Codes identifying sets of vertices, Lecture Notes in Comput. Sci. 2227 (2001) 82–91. https://doi.org/10.1007/3-540-45624-4_9
[19] A. Lobstein. https://www.lri.fr/~lobstein/bibLOCDOMetID.html