Proper Rainbow Connection Number of Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 809-826.

Voir la notice de l'article provenant de la source Library of Science

A path in an edge-coloured graph is called a rainbow path if its edges receive pairwise distinct colours. An edge-coloured graph is said to be rainbow connected if any two distinct vertices of the graph are connected by a rainbow path. The minimum k for which there exists such an edge-colouring is the rainbow connection number rc(G) of G. Recently, Bau et al. [Rainbow connectivity in some Cayley graphs, Australas. J. Combin. 71 (2018) 381–393] introduced this concept with the additional requirement that the edge-colouring must be proper. The proper rainbow connection number of G, denoted by prc(G), is the minimum number of colours needed in order to make it properly rainbow connected. Obviously, prc(G) ≥ maxrc(G), χ′(G). In this paper we first prove an improved upper bound prc(G) ≤ n for every connected graph G of order n ≥ 3. Next we show that the difference prc(G) – maxrc(G), χ′(G) can be arbitrarily large. Finally, we present several sufficient conditions for graph classes satisfying prc(G) = χ′(G).
Keywords: edge-colouring, rainbow connection number, proper rainbow connection number
@article{DMGT_2021_41_3_a7,
     author = {Doan, Trung Duy and Schiermeyer, Ingo},
     title = {Proper {Rainbow} {Connection} {Number} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {809--826},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a7/}
}
TY  - JOUR
AU  - Doan, Trung Duy
AU  - Schiermeyer, Ingo
TI  - Proper Rainbow Connection Number of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 809
EP  - 826
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a7/
LA  - en
ID  - DMGT_2021_41_3_a7
ER  - 
%0 Journal Article
%A Doan, Trung Duy
%A Schiermeyer, Ingo
%T Proper Rainbow Connection Number of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 809-826
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a7/
%G en
%F DMGT_2021_41_3_a7
Doan, Trung Duy; Schiermeyer, Ingo. Proper Rainbow Connection Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 809-826. http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a7/

[1] S. Bau, P. Johnson, E. Jones, K. Kumwenda and R. Matzke, Rainbow connectivity in some Cayley graphs, Australas. J. Combin. 71 (2018) 381–393.

[2] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #R57. doi:10.37236/781

[3] L.S. Chandran, A. Das, D. Rajendraprasad and N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012) 206–218. doi:10.1002/jgt.20643

[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.

[5] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531–4535. doi:10.1016/j.tcs.2011.04.032

[6] D.G. Hoffman and C.A. Rodger, The chromatic index of complete multipartite graphs, J. Graph Theory 16 (1992) 159–163. doi:10.1002/jgt.3190160207

[7] H. Jiang, W. Li, X. Li and C. Magnant, On proper ( strong ) rainbow connection of graphs, Discuss. Math. Graph Theory 41 (2021) 469–479. doi:10.7151/dmgt.2201

[8] A. Kemnitz, J. Przyby lo, I. Schiermeyer and M. Woźniak, Rainbow connection in sparse graphs, Discuss. Math. Graph Theory 33 (2013) 181–192. doi:10.7151/dmgt.1640

[9] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313–320. doi:10.7151/dmgt.1547

[10] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453–465. doi:10.1007/BF01456961

[11] X. Li and S. Liu, Tight upper bound of the rainbow vertex-connection number for 2 -connected graphs, Discrete Appl. Math. 173 (2014) 62–69. doi:10.1016/j.dam.2014.04.002

[12] X. Li, M. Liu, and I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory 33 (2013) 603–611. doi:10.7151/dmgt.1692

[13] X. Li and C. Magnant, Properly colored notions of connectivity—a dynamic survey, Theory Appl. Graphs 0(1) (2015) Art. 2. doi:10.20429/tag.2015.000102

[14] X. Li, Y. Mao and Y. Shi, The strong rainbow vertex-connection of graphs, Util. Math. 93 (2014) 213–223.

[15] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory 33 (2013) 307–313. doi:10.7151/dmgt.1664

[16] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2

[17] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer, New York, 2012). doi:10.1007/978-1-4614-3119-0

[18] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, Combinatorial Algorithms, Lect. Notes Comput. Sci. 5874 (2009) 432–437. doi:10.1007/978-3-642-10217-2 42

[19] V.G. Vizing, On an estimate of the chromatic class of p -graph, Diskret. Analiz. 3 (1964) 25–30, in Russian.

[20] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).