Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_3_a7, author = {Doan, Trung Duy and Schiermeyer, Ingo}, title = {Proper {Rainbow} {Connection} {Number} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {809--826}, publisher = {mathdoc}, volume = {41}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a7/} }
Doan, Trung Duy; Schiermeyer, Ingo. Proper Rainbow Connection Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 809-826. http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a7/
[1] S. Bau, P. Johnson, E. Jones, K. Kumwenda and R. Matzke, Rainbow connectivity in some Cayley graphs, Australas. J. Combin. 71 (2018) 381–393.
[2] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #R57. doi:10.37236/781
[3] L.S. Chandran, A. Das, D. Rajendraprasad and N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012) 206–218. doi:10.1002/jgt.20643
[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
[5] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531–4535. doi:10.1016/j.tcs.2011.04.032
[6] D.G. Hoffman and C.A. Rodger, The chromatic index of complete multipartite graphs, J. Graph Theory 16 (1992) 159–163. doi:10.1002/jgt.3190160207
[7] H. Jiang, W. Li, X. Li and C. Magnant, On proper ( strong ) rainbow connection of graphs, Discuss. Math. Graph Theory 41 (2021) 469–479. doi:10.7151/dmgt.2201
[8] A. Kemnitz, J. Przyby lo, I. Schiermeyer and M. Woźniak, Rainbow connection in sparse graphs, Discuss. Math. Graph Theory 33 (2013) 181–192. doi:10.7151/dmgt.1640
[9] A. Kemnitz and I. Schiermeyer, Graphs with rainbow connection number two, Discuss. Math. Graph Theory 31 (2011) 313–320. doi:10.7151/dmgt.1547
[10] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453–465. doi:10.1007/BF01456961
[11] X. Li and S. Liu, Tight upper bound of the rainbow vertex-connection number for 2 -connected graphs, Discrete Appl. Math. 173 (2014) 62–69. doi:10.1016/j.dam.2014.04.002
[12] X. Li, M. Liu, and I. Schiermeyer, Rainbow connection number of dense graphs, Discuss. Math. Graph Theory 33 (2013) 603–611. doi:10.7151/dmgt.1692
[13] X. Li and C. Magnant, Properly colored notions of connectivity—a dynamic survey, Theory Appl. Graphs 0(1) (2015) Art. 2. doi:10.20429/tag.2015.000102
[14] X. Li, Y. Mao and Y. Shi, The strong rainbow vertex-connection of graphs, Util. Math. 93 (2014) 213–223.
[15] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory 33 (2013) 307–313. doi:10.7151/dmgt.1664
[16] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. doi:10.1007/s00373-012-1243-2
[17] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer, New York, 2012). doi:10.1007/978-1-4614-3119-0
[18] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, Combinatorial Algorithms, Lect. Notes Comput. Sci. 5874 (2009) 432–437. doi:10.1007/978-3-642-10217-2 42
[19] V.G. Vizing, On an estimate of the chromatic class of p -graph, Diskret. Analiz. 3 (1964) 25–30, in Russian.
[20] D.B. West, Introduction to Graph Theory (Prentice Hall, 2001).