Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_3_a5, author = {Cordero-Michel, Narda and Galeana-S\'anchez, Hortensia}, title = {Alternating-Pancyclism in {2-Edge-Colored} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {779--800}, publisher = {mathdoc}, volume = {41}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a5/} }
TY - JOUR AU - Cordero-Michel, Narda AU - Galeana-Sánchez, Hortensia TI - Alternating-Pancyclism in 2-Edge-Colored Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 779 EP - 800 VL - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a5/ LA - en ID - DMGT_2021_41_3_a5 ER -
Cordero-Michel, Narda; Galeana-Sánchez, Hortensia. Alternating-Pancyclism in 2-Edge-Colored Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 779-800. http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a5/
[1] J. Bang-Jensen and G. Gutin, Alternating cycles and paths in edge-coloured multi-graphs: A survey, Discrete Math. 165/166 (1997) 39–60. doi:10.1016/S0012-365X(96)00160-4
[2] J. Bang-Jensen and G. Gutin, Alternating cycles and trails in 2 -edge-coloured complete multigraphs, Discrete Math. 188 (1998) 61–72. doi:10.1016/S0012-365X(97)00274-4
[3] J. Bang-Jensen and G.Z. Gutin, Digraphs: Theory, Algorithms and Applications (Springer-Verlag London, Ltd, London, 2009). doi:10.1007/978-1-84800-998-1
[4] W.S. Chou, Y. Manoussakis, O. Megalakaki, M. Spyratos and Zs. Tuza, Paths through fixed vertices in edge-colored graphs, Math. Sci. Hum. 127 (1994) 49–58.
[5] A. Contreras-Balbuena, H. Galeana-Sánchez and I.A. Goldfeder, A new sufficient condition for the existence of alternating Hamiltonian cycles in 2 -edge-colored multi-graphs, Discrete Appl. Math. 229 (2017) 55–63. doi:10.1016/j.dam.2017.04.033
[6] N. Cordero-Michel and H. Galeana-Sánchez, Vertex alternating-pancyclism in 2- edge-colored generalized sum of graphs, Discrete Appl. Math 284 (2020) 281–289. doi:10.1016/j.dam.2020.03.047
[7] P. Das, Pan-alternating cyclic edge-partitioned graphs, Ars Combin. 14 (1982) 105–114.
[8] D. Dorninger, On permutations of chromosomes, in: Contributions to General Algebra 5, Proceedings of the Salzburg Conference, May 29-June 1, 1986, Hölder-Pichler-Tempsky (Ed(s)), (Teubner-Verlag, Stuttgart, 1987) 95–103.
[9] D. Dorninger, Hamiltonian circuits determining the order of chromosomes, Discrete Appl. Math. 50 (1994) 159–168. doi:10.1016/0166-218X(92)00171-H
[10] D. Dorninger and W. Timischl, Geometrical constraints on Bennett’s predictions of chromosome order, Heredity 59 (1987) 321–325. doi:10.1038/hdy.1987.138
[11] S. Fujita and C. Magnant, Properly colored paths and cycles, Discrete Appl. Math. 159 (2011) 1391–1397. doi:10.1016/j.dam.2011.06.005
[12] A. Gorbenko and V. Popov, The Hamiltonian alternating path problem, IAENG Int. J. Appl. Math. 42 (2012) 204–213.
[13] L. Gourves, A. Lyra, C. Martinhon and J. Monnot, The minimum reload s – t path, trail and walk problems, Discrete Appl. Math. 158 (2010) 1404–1417. doi:10.1016/j.dam.2010.03.009
[14] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33–38. doi:10.1007/BF02122681
[15] J. Petersen, Die Theorie der regulären graphs, Acta Math. 15 (1891) 193–220. doi:10.1007/BF02392606
[16] P.A. Pevzner, DNA physical mapping and alternating Eulerian cycles in colored graphs, Algorithmica 13 (1995) 77–105. doi:10.1007/BF01188582
[17] G. Wang and H. Li, Color degree and alternating cycles in edge-colored graphs, Discrete Math. 309 (2009) 4349–4354. doi:10.1016/j.disc.2009.01.016
[18] H.C. Wirth and J. Ste an, Reload cost problems: minimum diameter spanning tree, Discrete Appl. Math. 113 (2001) 73–85. doi:10.1016/S0166-218X(00)00392-9
[19] H. Xu, D.M. Kilgour, K.W. Hipel and G. Kemkes, Using matrices to link conflict evolution and resolution in a graph model, European J. Oper. Res. 207 (2010) 318–329. doi:10.1016/j.ejor.2010.03.025
[20] H. Xu, K.W. Li, K.W. Hipel and D.M. Kilgour, A matrix approach to status quo analysis in the graph model for conflict resolution, Appl. Math. Comput. 212 (2009) 470–480. doi:10.1016/j.amc.2009.02.051
[21] H. Xu, K.W. Li, D.M. Kilgour and K.W. Hipel, A matrix-based approach to searching colored paths in a weighted colored multidigraph, Appl. Math. Comput. 215 (2009) 353–366. doi:10.1016/j.amc.2009.04.086