Domination Number of Graphs with Minimum Degree Five
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 763-777

Voir la notice de l'article provenant de la source Library of Science

We prove that for every graph G on n vertices and with minimum degree five, the domination number γ(G) cannot exceed n/3. The proof combines an algorithmic approach and the discharging method. Using the same technique, we provide a shorter proof for the known upper bound 4n/11 on the domination number of graphs of minimum degree four.
Keywords: dominating set, domination number, discharging method
@article{DMGT_2021_41_3_a4,
     author = {Bujt\'as, Csilla},
     title = {Domination {Number} of {Graphs} with {Minimum} {Degree} {Five}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {763--777},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a4/}
}
TY  - JOUR
AU  - Bujtás, Csilla
TI  - Domination Number of Graphs with Minimum Degree Five
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 763
EP  - 777
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a4/
LA  - en
ID  - DMGT_2021_41_3_a4
ER  - 
%0 Journal Article
%A Bujtás, Csilla
%T Domination Number of Graphs with Minimum Degree Five
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 763-777
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a4/
%G en
%F DMGT_2021_41_3_a4
Bujtás, Csilla. Domination Number of Graphs with Minimum Degree Five. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 763-777. http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a4/