Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_3_a3, author = {Bre\v{s}ar, Bo\v{s}tjan and Hartnell, Bert L. and Henning, Michael A. and Kuenzel, Kirsti and Rall, Douglas F.}, title = {A {New} {Framework} to {Approach} {Vizing{\textquoteright}s} {Conjecture}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {749--762}, publisher = {mathdoc}, volume = {41}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a3/} }
TY - JOUR AU - Brešar, Boštjan AU - Hartnell, Bert L. AU - Henning, Michael A. AU - Kuenzel, Kirsti AU - Rall, Douglas F. TI - A New Framework to Approach Vizing’s Conjecture JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 749 EP - 762 VL - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a3/ LA - en ID - DMGT_2021_41_3_a3 ER -
%0 Journal Article %A Brešar, Boštjan %A Hartnell, Bert L. %A Henning, Michael A. %A Kuenzel, Kirsti %A Rall, Douglas F. %T A New Framework to Approach Vizing’s Conjecture %J Discussiones Mathematicae. Graph Theory %D 2021 %P 749-762 %V 41 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a3/ %G en %F DMGT_2021_41_3_a3
Brešar, Boštjan; Hartnell, Bert L.; Henning, Michael A.; Kuenzel, Kirsti; Rall, Douglas F. A New Framework to Approach Vizing’s Conjecture. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 749-762. http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a3/
[1] R. Aharoni and T. Szabó, Vizing’s conjecture for chordal graphs, Discrete Math. 309 (2009) 1766–1768. doi:10.1016/j.disc.2008.02.025
[2] A.M. Barcalkin and L.F. German, The external stability number of the Cartesian product of graphs, Bul. Akad. Stiinte RSS Moldoven. 94 (1979) 5–8.
[3] B. Brešar, Improving the Clark-Suen bound on the domination number of the Cartesian product of graphs, Discrete Math. 340 (2017) 2398–2401. doi:10.1016/j.disc.2017.05.007
[4] B. Brešar, Vizing’s conjecture for graphs with domination number 3 —a new proof, Electron. J. Combin. 22(3) (2015) #P3.38.
[5] B. Brešar, P. Dorbec, W. Goddard, B.L. Hartnell, M.A. Henning, S. Klavžar and D.F. Rall, Vizing’s conjecture: a survey and recent results, J. Graph Theory 69 (2012) 46–76. doi:10.1002/jgt.20565
[6] B. Brešar and D.F. Rall, Fair reception and Vizing’s conjecture, J. Graph Theory 61 (2009) 45–54. doi:10.1002/jgt.20366
[7] W.E. Clark and S. Suen, An inequality related to Vizing’s conjecture, Electron. J. Combin. 7 (2000) #N4.
[8] P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960) 17–61.
[9] B.L. Hartnell and D.F. Rall, Vizing’s conjecture and the one-half argument, Discuss. Math. Graph Theory 15 (1995) 205–216. doi:10.7151/dmgt.1018
[10] J.W. Moon and L. Moser, Almost all (0, 1) matrices are primitive, Studia Sci. Math. Hungar. 1 (1966) 153–156.
[11] M. Pilipczuk, M. Pilipczuk and R. Škrekovski, Some results on Vizing’s conjecture and related problems, Discrete Appl. Math. 160 (2012) 2484–2490. doi:10.1016/j.dam.2012.06.011
[12] S. Suen and J. Tarr, An improved inequality related to Vizing’s conjecture, Electron. J. Combin. 19(1) (2012) #P8.
[13] L. Sun, A result on Vizing’s conjecture, Discrete Math. 275 (2004) 363–366. doi:10.1016/j.disc.2003.09.003
[14] V.G. Vizing, Some unsolved problems in graph theory, Russian Math. Surveys 23(6) (1968) 125–141. doi:10.1070/RM1968v023n06ABEH001252
[15] S. Zerbib, An improved bound in Vizing’s Conjecture, Graphs Combin. 35 (2019) 1401–1404. doi:/10.1007/s00373-019-02083-6