Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_3_a2, author = {Bidine, Ez Zobair and Gadi, Taoufiq and Kchikech, Mustapha}, title = {Independence {Number} and {Packing} {Coloring} of {Generalized} {Mycielski} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {725--747}, publisher = {mathdoc}, volume = {41}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a2/} }
TY - JOUR AU - Bidine, Ez Zobair AU - Gadi, Taoufiq AU - Kchikech, Mustapha TI - Independence Number and Packing Coloring of Generalized Mycielski Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 725 EP - 747 VL - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a2/ LA - en ID - DMGT_2021_41_3_a2 ER -
%0 Journal Article %A Bidine, Ez Zobair %A Gadi, Taoufiq %A Kchikech, Mustapha %T Independence Number and Packing Coloring of Generalized Mycielski Graphs %J Discussiones Mathematicae. Graph Theory %D 2021 %P 725-747 %V 41 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a2/ %G en %F DMGT_2021_41_3_a2
Bidine, Ez Zobair; Gadi, Taoufiq; Kchikech, Mustapha. Independence Number and Packing Coloring of Generalized Mycielski Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 725-747. http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a2/
[1] G. Argiroffo, G. Nasini and P. Torres, The packing coloring problem for ( q, q – 4) graphs, in: International Symposium on Combinatorial Optimization, Lecture Notes in Comput. Sci. 7422 (2012) 309–319. doi:10.1007/978-3-642-32147-4_28
[2] G. Argiroffo, G. Nasini and P. Torres, The packing coloring problem for lobsters and partner limited graphs, Discrete Appl. Math. (2014) 164 373–382. doi:10.1016/j.dam.2012.08.008
[3] J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of cubic graphs, Discrete Math. (2018) 341 474–483. doi:10.1016/j.disc.2017.09.014
[4] B. Brešar and J. Ferme, An infinite family of subcubic graphs with unbounded packing chromatic number, Discrete Math. 341 (2018) 2337–2342. doi:10.1016/j.disc.2018.05.004
[5] B. Brešar and J. Ferme, Packing coloring of Sierpiński-type graphs, Aequationes Math. 92 (2018) 1091–1118. doi:10.1007/s00010-018-0561-8
[6] B. Brešar, S. Klavžar and D.F. Rall, On the packing chromatic number of Cartesian products, hexagonal lattice, and trees, Discrete Appl. Math. 155 (2007) 2303–2311. doi:10.1016/j.dam.2007.06.008
[7] B. Brešar, S. Klavžar and D.F. Rall, Packing chromatic number of base- 3 Sierpiński graphs, Graphs Combin. 32 (2016) 1313–1327. doi:10.1007/s00373-015-1647-x
[8] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number, (1, 1, 2, 2)- colorings, and characterizing the Petersen graph, Aequationes Math. 91 (2017) 169–184. doi:10.1007/s00010-016-0461-8
[9] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number under local changes in a graph, Discrete Math. 340 (2017) 1110–1115. doi:10.1016/j.disc.2016.09.030
[10] B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number versus chromatic and clique number, Aequationes Math. 92 (2018) 497–513. doi:10.1007/s00010-017-0520-9
[11] F. Deng, Z. Shao and A. Vesel, On the packing coloring of base- 3 Sierpiński and H graphs, (2018). arXiv preprint arXiv:1909.08285
[12] T. Doslić, Mycielskians and matchings, Discuss. Math. Graph Theory 25 (2005) 261–266. doi:10.7151/dmgt.1279
[13] J. Ekstein, J. Fiala, P. Holub and B. Lidický, The packing chromatic number of the square lattice is at least 12, (2010). arXiv preprint arXiv:1003.2291
[14] J. Ekstein, P. Holub and O. Togni, The packing coloring of distance graphs D(k, t), Discrete Appl. Math. 167 (2014) 100–106. doi:10.1016/j.dam.2013.10.036
[15] J. Fiala and P.A. Golovach, Complexity of the packing coloring problem for trees, Discrete Appl. Math. 158 (2010) 771–778. doi:10.1016/j.dam.2008.09.001
[16] J. Fiala, S. Klavžar and B. Lidický, The packing chromatic number of infinite product graphs, European J. Combin. 30 (2009) 1101–1113. doi:10.1016/j.ejc.2008.09.014
[17] A.S. Finbow and D.F. Rall, On the packing chromatic number of some lattices, Discrete Appl. Math. 158 (2010) 1224–1228. doi:10.1016/j.dam.2009.06.001
[18] D.C. Fisher, P.A. McKenna and E.D. Boyer, Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski’s graphs, Discrete Appl. Math. 84 (1998) 93–105. doi:10.1016/S0166-218X(97)00126-1
[19] N. Gastineau and O. Togni, S-packing colorings of cubic graphs, Discrete Math. 339 (2016) 2461–2470. doi:10.1016/j.disc.2016.04.017
[20] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris and D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33–50.
[21] L. Guo, R. Liu, and X. Guo, Super connectivity and super edge connectivity of the Mycielskian of a graph, Graphs Combin. 28 (2012) 143–147. doi:10.1007/s00373-011-1032-3
[22] L. Huang and G.J. Chang, The circular chromatic number of the Mycielskian of Gdk, J. Graph Theory 32 (1999) 63–71. doi:10.1002/(SICI)1097-0118(199909)32:1〈63::AID-JGT6〉3.0.CO;2-B
[23] Y. Jacobs, E. Jonck and E. Joubert, A lower bound for the packing chromatic number of the Cartesian product of cycles, Open Math. 11 (2013) 1344–1357. doi:10.2478/s11533-013-0237-5
[24] D. Korže and A. Vesel, On the packing chromatic number of square and hexagonal lattice, Ars Math. Contemp. 7 (2014) 13–22.
[25] D. Laïche, I. Bouchemakh and E. Sopena, On the packing coloring of undirected and oriented generalized theta graphs, Australas. J. Combin. 66 (2016) 310–329.
[26] M. Larsen, J. Propp and D. Ullman, The fractional chromatic number of Mycielski’s graphs, J. Graph Theory 19 (1995) 411–416. doi:10.1002/jgt.3190190313
[27] W. Lin, D. Der-Fen Liu and X. Zhu, Multi-coloring the Mycielskian of graphs, J. Graph Theory 63 (2010) 311–323. doi:10.1002/jgt.20429
[28] W. Lin, J. Wu, P.C. Lam and G. Gu, Several parameters of generalized Mycielskians, Discrete Appl. Math. 154 (2006) 1173–1182. doi:10.1016/j.dam.2005.11.001
[29] B. Martin, F. Raimondi, T. Chen and J. Martin, The packing chromatic number of the infinite square lattice is between 13 and 15, Discrete Appl. Math. 225 (2017) 136–142. doi:10.1016/j.dam.2017.03.013
[30] J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955) 161–162. doi:10.4064/cm-3-2-161-162
[31] KS. Savitha, MR. Chithra and A. Vijayakumar, Some diameter notions of the generalized Mycielskian of a graph, in: International Conference on Theoretical Computer Science and Discrete Mathematics 2016, Lecture Notes in Comput. Sci. 10398 (2017) 371–382. doi:10.1007/978-3-319-64419-6 48
[32] Z. Shao and A. Vesel, Modeling the packing coloring problem of graphs, Appl. Math. Model. 39 (2015) 3588–3595. doi:10.1016/j.apm.2014.11.060
[33] R. Soukal and P. Holub, A note on packing chromatic number of the square lattice, Electron. J. Combin. 17 (2010) #N17. doi:10.37236/466
[34] O. Togni, On packing colorings of distance graphs, Discrete Appl. Math. 167 (2014) 280–289. doi:10.1016/j.dam.2013.10.026
[35] P. Torres and M. Valencia-Pabon, The packing chromatic number of hypercubes, Discrete Appl. Math. 190–191 (2015) 127–140. doi:10.1016/j.dam.2015.04.006
[36] A. Vesel and D. Korže, Packing coloring of generalized Sierpiński graphs, Discrete Math. Theor. Comput. Sci. 21 (2019) #7. doi:10.23638/DMTCS-21-3-7