Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_3_a0, author = {Alipour, Maryam and Tittmann, Peter}, title = {Graph {Operations} and {Neighborhood} {Polynomials}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {697--711}, publisher = {mathdoc}, volume = {41}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a0/} }
Alipour, Maryam; Tittmann, Peter. Graph Operations and Neighborhood Polynomials. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 3, pp. 697-711. http://geodesic.mathdoc.fr/item/DMGT_2021_41_3_a0/
[1] S. Akbari, S. Alikhani and Y.-h. Peng, Characterization of graphs using domination polynomials, European J. Combin. 31 (2010) 1714–1724. doi:10.1016/j.ejc.2010.03.007
[2] A. Andrzejak, Splitting formulas for Tutte polynomials, J. Combin. Theory Ser. B 70 (1997) 346–366. doi:10.1006/jctb.1997.1767
[3] J.L. Arocha and B. Llano, Mean value for the matching and dominating polynomials, Discuss. Math. Graph Theory 20 (2000) 57–69. doi:10.7151/dmgt.1106
[4] A.E. Brouwer, P. Csorba and A. Schrijver, The number of dominating sets of a finite graph is odd (2009). https://www.win.tue.nl/~aeb/preprints/domin4a.pdf
[5] J.I. Brown and R.J. Nowakowski, The neighbourhood polynomial of a graph, Australas. J. Combin. 42 (2008) 55–68.
[6] M. Dod, The independent domination polynomial. arXiv preprint arXiv:1602.08250 (2016).
[7] K. Dohmen and P. Tittmann, Domination reliability, Electron. J. Combin. 19 (2012) #P15. doi:10.37236/1166
[8] J. Flum and M. Grohe, The parameterized complexity of counting problems, SIAM J. Comput. 33 (2004) 892–922. doi:10.1137/S0097539703427203
[9] B.S. Gubser, A characterization of almost-planar graphs, Combin. Probab. Comput. 5 (1996) 227–245. doi:10.1017/S0963548300002005
[10] I. Heinrich and P. Tittmann, Neighborhood and domination polynomials of graphs, Graphs Combin. 34 (2018) 1203–1216. doi:10.1007/s00373-018-1968-7
[11] S. Kijima, Y. Okamoto and T. Uno, Dominating set counting in graph classes, in: Proc. 17th Annual International Conference, COCOON 2011, Lecture Notes in Comput. Sci. 6842 (2011) 13–24. doi:10.1007/978-3-642-22685-4_2
[12] T. Kotek, J. Preen, f. Simon, P. Tittmann and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, Electron. J. Combin. 19 (2012) #P47. doi:10.37236/2475
[13] T. Kotek, J. Preen and P. Tittmann, Subset-sum representations of domination polynomials, Graphs Combin. 30 (2014) 647–660. doi:10.1007/s00373-013-1286-z
[14] T. Kotek, J. Preen and P. Tittmann, Domination polynomials of graph products. arXiv preprint arXiv:1305.1475 (2013)
[15] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978) 319–324. doi:10.1016/0097-3165(78)90022-5