Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_2_a6, author = {Janczewski, Robert and Trzaskowska, Anna Maria and Turowski, Krzysztof}, title = {T-Colorings, {Divisibility} and the {Circular} {Chromatic} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {441--450}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a6/} }
TY - JOUR AU - Janczewski, Robert AU - Trzaskowska, Anna Maria AU - Turowski, Krzysztof TI - T-Colorings, Divisibility and the Circular Chromatic Number JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 441 EP - 450 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a6/ LA - en ID - DMGT_2021_41_2_a6 ER -
%0 Journal Article %A Janczewski, Robert %A Trzaskowska, Anna Maria %A Turowski, Krzysztof %T T-Colorings, Divisibility and the Circular Chromatic Number %J Discussiones Mathematicae. Graph Theory %D 2021 %P 441-450 %V 41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a6/ %G en %F DMGT_2021_41_2_a6
Janczewski, Robert; Trzaskowska, Anna Maria; Turowski, Krzysztof. T-Colorings, Divisibility and the Circular Chromatic Number. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 441-450. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a6/
[1] M.B. Cozzens and F.S. Roberts, T-colorings of graphs and the channel assigment problem, Congr. Numer. 35 (1982) 191–208.
[2] K. Giaro, R. Janczewski and M. Małafiejski, A polynomial algorithm for finding T-span of generalized cacti, Discrete Appl. Math. 129 (2003) 371–382. doi:10.1016/S0166-218X(02)00575-9
[3] K. Giaro, R. Janczewski and M. Małafiejski, The complexity of the T-coloring problem for graphs with small degree, Discrete Appl. Math. 129 (2003) 361–369. doi:10.1016/S0166-218X(02)00576-0
[4] G. Fan, Circular chromatic number and Mycielski graphs, Combinatorica 24 (2004) 127–135. doi:10.1007/s00493-004-0008-9
[5] W.K. Hale, Frequency assigment: theory and applications, Proc. IEEE 68 (1980) 1497–1514. doi:10.1109/PROC.1980.11899
[6] R. Janczewski, Divisibility and T-span of graphs, Discrete Math. 234 (2001) 171–179. doi:10.1016/S0012-365X(00)00378-2
[7] R. Janczewski, Greedy T-colorings of graphs, Discrete Math. 309 (2009) 1685–1690. doi:10.1016/j.disc.2008.01.049
[8] J.S.-T. Juan, I. Sun and P.-X. Wu, T-coloring on folded hypercubes, Taiwanese J. Math. 13 (2009) 1331–1341. doi:10.11650/twjm/1500405511
[9] A. Raychaudhuri, Further results on T-coloring and frequency assignment problems, SIAM J. Discrete Math. 7 (1994) 605–613. doi:10.1137/S0895480189171746
[10] D. Moser, The star-chromatic number of planar graphs, J. Graph Theory 24 (1997) 33–43. doi:10.1002/(SICI)1097-0118(199701)24:1〈33::AID-JGT5〉3.0.CO;2-K
[11] B. Tesman, Applications of forbidden difference graphs to T-coloring, Congr. Numer. 74 (1990) 15–24.
[12] A. Vince, Star chromatic number, J. Graph Theory 12 (1988) 551–559. doi:10.1002/jgt.3190120411
[13] Y. Zhao, W. He and R. Cao, The edge span of T-coloring on graph $C_n^d$, Appl. Math. Lett. 19 (2006) 647–651. doi:10.1016/j.aml.2005.08.016
[14] X. Zhu, Circular chromatic number: a survey, Discrete Math. 229 (2001) 371–410. doi:10.1016/S0012-365X(00)00217-X
[15] X. Zhu, Recent developments in circular colouring of graphs, Algorithms Combin. 26 (2006) 497–550. doi:10.1007/3-540-33700-8_25