The Minimum Size of a Graph with Given Tree Connectivity
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 409-425

Voir la notice de l'article provenant de la source Library of Science

For a graph G = (V, E) and a set S ⊆ V of at least two vertices, an S-tree is a such subgraph T of G that is a tree with S ⊆ V(T). Two S-trees T_1 and T_2 are said to be internally disjoint if E(T_1) ∩ E(T_2) = ∅ and V(T_1) ∩ V(T_2) = S, and edge-disjoint if E(T_1) ∩ E(T_2) = ∅. The generalized local connectivity κ_G(S) (generalized local edge-connectivity λ_G(S), respectively) is the maximum number of internally disjoint (edge-disjoint, respectively) S-trees in G. For an integer k with 2 ≤ k ≤ n, the generalized k-connectivity (generalized k-edge-connectivity, respectively) is defined as κ_k(G) = minκ_G(S) | S ⊆ V(G), |S| = k (λ_k(G) = minλ_G(S) | S ⊆ V(G), |S| = k, respectively). Let f(n, k, t) (g(n, k, t), respectively) be the minimum size of a connected graph G with order n and κ_k(G) = t (λ_k(G) = t, respectively), where 3 ≤ k ≤ n and 1≤t≤n-⌈k/2⌉. For general k and t, Li and Mao obtained a lower bound for g(n, k, t) which is tight for the case k = 3. We show that the bound also holds for f(n, k, t) and is tight for the case k = 3. When t is general, we obtain upper bounds of both f(n, k, t) and g(n, k, t) for k ∈ 3, 4, 5, and all of these bounds can be attained. When k is general, we get an upper bound of g(n, k, t) for t ∈ 1, 2, 3, 4 and an upper bound of f(n, k, t) for t ∈ 1, 2, 3. Moreover, both bounds can be attained.
Keywords: generalized connectivity, tree connectivity, eneralized k-connectivity, generalized k-edge-connectivity, packing
@article{DMGT_2021_41_2_a4,
     author = {Sun, Yuefang and Sheng, Bin and Jin, Zemin},
     title = {The {Minimum} {Size} of a {Graph} with {Given} {Tree} {Connectivity}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {409--425},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a4/}
}
TY  - JOUR
AU  - Sun, Yuefang
AU  - Sheng, Bin
AU  - Jin, Zemin
TI  - The Minimum Size of a Graph with Given Tree Connectivity
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 409
EP  - 425
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a4/
LA  - en
ID  - DMGT_2021_41_2_a4
ER  - 
%0 Journal Article
%A Sun, Yuefang
%A Sheng, Bin
%A Jin, Zemin
%T The Minimum Size of a Graph with Given Tree Connectivity
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 409-425
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a4/
%G en
%F DMGT_2021_41_2_a4
Sun, Yuefang; Sheng, Bin; Jin, Zemin. The Minimum Size of a Graph with Given Tree Connectivity. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 409-425. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a4/