Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_2_a3, author = {Campero-Alonzo, Jos\'e Manuel and S\'anchez-L\'opez, Roc{\'\i}o}, title = {H-Kernels in {Unions} of {H-Colored} {Quasi-Transitive} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {391--408}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a3/} }
TY - JOUR AU - Campero-Alonzo, José Manuel AU - Sánchez-López, Rocío TI - H-Kernels in Unions of H-Colored Quasi-Transitive Digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 391 EP - 408 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a3/ LA - en ID - DMGT_2021_41_2_a3 ER -
%0 Journal Article %A Campero-Alonzo, José Manuel %A Sánchez-López, Rocío %T H-Kernels in Unions of H-Colored Quasi-Transitive Digraphs %J Discussiones Mathematicae. Graph Theory %D 2021 %P 391-408 %V 41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a3/ %G en %F DMGT_2021_41_2_a3
Campero-Alonzo, José Manuel; Sánchez-López, Rocío. H-Kernels in Unions of H-Colored Quasi-Transitive Digraphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 391-408. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a3/
[1] P. Arpin and V. Linek, Reachability problems in edge-colored digraphs, Discrete Math. 307 (2007) 2276–2289. doi:10.1016/j.disc.2006.09.042
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2009). doi:10.1007/978-1-84800-998-1
[3] Y. Bai, S. Fujita and S. Zhang, Kernels by properly colored paths in arc-colored digraphs, Discrete Math. 341 (2018) 1523–1533. doi:10.1016/j.disc.2018.02.014
[4] C. Berge, Graphs (North-Holland, Amsterdan, 1989).
[5] C. Berge and P. Duchet, Recent problems and results about kernels in directed graphs, Discrete Math. 86 (1990) 27–31. doi:10.1016/0012-365X(90)90346-J
[6] P. Delgado-Escalante and H. Galeana-Sánchez, Restricted domination in arc-colored digraphs, AKCE Int. J. Graphs Comb. 11 (2014) 95–104.
[7] P. Delgado-Escalante, H. Galeana-Sánchez and E. O’Reilly-Regueiro, Alternating kernels, Discrete Appl. Math. 236 (2018) 153–164. doi:10.1016/j.dam.2017.10.013
[8] H. Galeana-Sánchez, Kernels by monochromatic paths and the color-class digraph, Discuss. Math. Graph Theory 31 (2011) 273–281. doi:10.7151/dmgt.1544
[9] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103–112. doi:10.1016/0012-365X(95)00036-V
[10] H. Galeana-Sánchez and R. Rojas-Monroy, Kernels in quasi-transitive digraphs, Discrete Math. 306 (2006) 1969–1974. doi:10.1016/j.disc.2006.02.015
[11] H. Galeana-Sánchez, B. Llano and J.J. Montellano-Ballesteros, Kernels by monochromatic paths in m-colored unions of quasi-transitive digraphs, Discrete Appl. Math. 158 (2010) 461–466. doi:10.1016/j.dam.2009.11.005
[12] A. Ghouilá-Houri, Caractérisation des graphes non orientés dont on peut orienter les arêtes de manière à obtenir le graphe d’une relation d’ordre, C. R. Math. Acad. Sci. Paris 254 (1962) 1370–1371.
[13] V. Linek and B. Sands, A note on paths in edge-colored tournaments, Ars Combin. 44 (1996) 225–228.
[14] K.B. Reid, Monotone reachability in arc-colored tournaments, Congr. Numer. 146 (2000) 131–141.
[15] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory Ser. B 33 (1982) 271–275. doi:10.1016/0095-8956(82)90047-8