@article{DMGT_2021_41_2_a20,
author = {Wang, Ruixia},
title = {Hamiltonian {Cycle} {Problem} in {Strong} {k-Quasi-Transitive} {Digraphs} with {Large} {Diameter}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {685--690},
year = {2021},
volume = {41},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a20/}
}
Wang, Ruixia. Hamiltonian Cycle Problem in Strong k-Quasi-Transitive Digraphs with Large Diameter. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 685-690. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a20/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer-Verlag, London, 2000).
[2] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and k-quasi-transitive digraphs, Discrete Math. 312 (2012) 2522–2530. doi:10.1016/j.disc.2012.05.005
[3] H. Galeana-Sánchez. I.A. Goldfeder and I. Urrutia, On the structure of strong 3-quasi-transitive digraphs, Discrete Math. 310 (2010) 2495–2498. doi:10.1016/j.disc.2010.06.008
[4] H. Galeana-Sánchez, C. Hernández-Cruz and M.A. Juárez-Camacho, On the existence and number of (k +1)-kings in k-quasi-transitive digraphs, Discrete Math. 313 (2013) 2582–2591. doi:10.1016/j.disc.2013.08.007
[5] R. Wang and W. Meng, k-kings in k-quasitransitive digraphs, J. Graph Theory 79 (2015) 55–62. doi:10.1002/jgt.21814
[6] R. Wang, ( k +1)- kernels and the number of k-kings in k-quasi-transitive digraphs, Discrete Math. 338 (2015) 114–121. doi:10.1016/j.disc.2014.08.009
[7] R. Wang and H. Zhang, Hamiltonian paths in k-quasi-transitive digraphs, Discrete Math. 339 (2016) 2094–2099. doi:10.1016/j.disc.2016.02.020