Block Graphs with Large Paired Domination Multisubdivision Number
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 665-684.

Voir la notice de l'article provenant de la source Library of Science

The paired domination multisubdivision number of a nonempty graph G, denoted by msdpr(G), is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G. We characterize block graphs with msdpr(G) = 4.
Keywords: paired domination, domination subdivision number, domination multisubdivision number, block graph
@article{DMGT_2021_41_2_a19,
     author = {Mynhardt, Christina M. and Raczek, Joanna},
     title = {Block {Graphs} with {Large} {Paired} {Domination} {Multisubdivision} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {665--684},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a19/}
}
TY  - JOUR
AU  - Mynhardt, Christina M.
AU  - Raczek, Joanna
TI  - Block Graphs with Large Paired Domination Multisubdivision Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 665
EP  - 684
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a19/
LA  - en
ID  - DMGT_2021_41_2_a19
ER  - 
%0 Journal Article
%A Mynhardt, Christina M.
%A Raczek, Joanna
%T Block Graphs with Large Paired Domination Multisubdivision Number
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 665-684
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a19/
%G en
%F DMGT_2021_41_2_a19
Mynhardt, Christina M.; Raczek, Joanna. Block Graphs with Large Paired Domination Multisubdivision Number. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 665-684. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a19/

[1] M. Atapour, A. Khodkar and S.M. Sheikholeslami, Characterization of double domination subdivision number of trees, Discrete Appl. Math. 155 (2007) 1700–1707. doi:10.1016/j.dam.2007.03.007

[2] M. Dettlaff and J. Raczek, Paired domination multisubdivision numbers of graphs, submitted.

[3] M. Dettlaff, J. Raczek and J. Topp, Domination subdivision and domination multi-subdivision numbers of graphs, Discuss. Math. Graph. Theory 39 (2019) 829–839. doi:10.7151/dmgt.2103

[4] O. Favaron, H. Karami and S.M. Sheikholeslami, Connected domination subdivision numbers of graphs, Util. Math. 77 (2008) 101–111.

[5] O. Favaron, H. Karami and S.M. Sheikholeslami, Paired-domination subdivision numbers of graphs, Graphs Combin. 25 (2009) 503–512. doi:10.1007/s00373-005-0871-1

[6] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, J. Knisely and L.C. van der Merwe, Domination subdivision numbers, Discuss. Math. Graph Theory 21 (2001) 239–253. doi:10.7151/dmgt.1147

[7] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2004) 457–467. doi:10.7151/dmgt.1244

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).

[9] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, Total domination subdivision numbers, J. Combin. Math. Combin. Comput. 44 (2003) 115–128.

[10] A. Khodkar, B.P. Mobaraky and S.M. Sheikholeslami, Upper bounds for the Roman domination subdivision number of a graph, AKCE Int. J. Graphs Comb. 5 (2008) 7–14.

[11] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).