Fair Total Domination Number in Cactus Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 647-664

Voir la notice de l'article provenant de la source Library of Science

For k ≥ 1, a k-fair total dominating set (or just kFTD-set) in a graph G is a total dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V. The k-fair total domination number of G, denoted by ftdk(G), is the minimum cardinality of a kFTD-set. A fair total dominating set, abbreviated FTD-set, is a kFTD-set for some integer k ≥ 1. The fair total domination number of a nonempty graph G, denoted by ftd(G), of G is the minimum cardinality of an FTD-set in G. In this paper, we present upper bounds for the 1-fair total domination number of cactus graphs, and characterize cactus graphs achieving equality for the upper bounds.
Keywords: fair total domination, cactus graph
@article{DMGT_2021_41_2_a18,
     author = {Hajian, Majid and Rad, Nader Jafari},
     title = {Fair {Total} {Domination} {Number} in {Cactus} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {647--664},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a18/}
}
TY  - JOUR
AU  - Hajian, Majid
AU  - Rad, Nader Jafari
TI  - Fair Total Domination Number in Cactus Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 647
EP  - 664
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a18/
LA  - en
ID  - DMGT_2021_41_2_a18
ER  - 
%0 Journal Article
%A Hajian, Majid
%A Rad, Nader Jafari
%T Fair Total Domination Number in Cactus Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 647-664
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a18/
%G en
%F DMGT_2021_41_2_a18
Hajian, Majid; Rad, Nader Jafari. Fair Total Domination Number in Cactus Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 647-664. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a18/