Fair Total Domination Number in Cactus Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 647-664.

Voir la notice de l'article provenant de la source Library of Science

For k ≥ 1, a k-fair total dominating set (or just kFTD-set) in a graph G is a total dominating set S such that |N(v) ∩ S| = k for every vertex v ∈ V. The k-fair total domination number of G, denoted by ftdk(G), is the minimum cardinality of a kFTD-set. A fair total dominating set, abbreviated FTD-set, is a kFTD-set for some integer k ≥ 1. The fair total domination number of a nonempty graph G, denoted by ftd(G), of G is the minimum cardinality of an FTD-set in G. In this paper, we present upper bounds for the 1-fair total domination number of cactus graphs, and characterize cactus graphs achieving equality for the upper bounds.
Keywords: fair total domination, cactus graph
@article{DMGT_2021_41_2_a18,
     author = {Hajian, Majid and Rad, Nader Jafari},
     title = {Fair {Total} {Domination} {Number} in {Cactus} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {647--664},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a18/}
}
TY  - JOUR
AU  - Hajian, Majid
AU  - Rad, Nader Jafari
TI  - Fair Total Domination Number in Cactus Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 647
EP  - 664
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a18/
LA  - en
ID  - DMGT_2021_41_2_a18
ER  - 
%0 Journal Article
%A Hajian, Majid
%A Rad, Nader Jafari
%T Fair Total Domination Number in Cactus Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 647-664
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a18/
%G en
%F DMGT_2021_41_2_a18
Hajian, Majid; Rad, Nader Jafari. Fair Total Domination Number in Cactus Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 647-664. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a18/

[1] Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914. doi:10.1016/j.disc.2012.05.006

[2] B. Chaluvaraju, M. Chellali and K.A. Vidya, Perfect k-domination in graphs, Australas. J. Combin. 48 (2010) 175–184.

[3] B. Chaluvaraju and K. Vidya, Perfect dominating set graph of a graph, Adv. Appl. Discrete Math. 2 (2008) 49–57.

[4] E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Combin. Inform. System Sci. 18 (1993) 136–148.

[5] I.J. Dejter, Perfect domination in regular grid graphs, Australas. J. Combin. 42 (2008) 99–114.

[6] I.J. Dejter and A.A. Delgado, Perfect domination in rectangular grid graphs, J. Combin. Math. Combin. Comput. 70 (2009) 177–196.

[7] M.R. Fellows and M.N. Hoover, Perfect domination, Australas. J. Combin. 3 (1991) 141–150.

[8] M. Hajian and N. Jafari Rad, Trees and unicyclic graph with large fair domination number, Util. Math., to appear.

[9] M. Hajian and N. Jafari Rad, Fair domination number in cactus graphs, Discuss. Math. Graph Theory 39 (2019) 489–503. doi:10.7151/dmgt.2088

[10] M. Hajian, N. Jafari Rad and L. Volkmann, Bounds on the fair total domination number in trees and unicyclic graphs, Australas. J. Combin. 74 (2019) 460–475.

[11] H. Hatami and P. Hatami, Perfect dominating sets in the Cartesian products of prime cycles, Electron. J. Combin. 14 (2007) #N8. doi:10.37236/1009

[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[13] E.C. Maravilla, R.T. Isla and S.R. Canoy Jr., Fair total domination in the join, corona, and composition of graphs, Int. J. Math. Anal. 8 (2014) 2677–2685. doi:10.12988/ijma.2014.49296