Restrained Domination in Self-Complementary Graphs
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 633-645

Voir la notice de l'article provenant de la source Library of Science

A self-complementary graph is a graph isomorphic to its complement. A set S of vertices in a graph G is a restrained dominating set if every vertex in V(G) S is adjacent to a vertex in S and to a vertex in V(G) S. The restrained domination number of a graph G is the minimum cardinality of a restrained dominating set of G. In this paper, we study restrained domination in self-complementary graphs. In particular, we characterize the self-complementary graphs having equal domination and restrained domination numbers.
Keywords: domination, complement, restrained domination, self-complementary graph
@article{DMGT_2021_41_2_a17,
     author = {Desormeaux, Wyatt J. and Haynes, Teresa W. and Henning, Michael A.},
     title = {Restrained {Domination} in {Self-Complementary} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {633--645},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a17/}
}
TY  - JOUR
AU  - Desormeaux, Wyatt J.
AU  - Haynes, Teresa W.
AU  - Henning, Michael A.
TI  - Restrained Domination in Self-Complementary Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 633
EP  - 645
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a17/
LA  - en
ID  - DMGT_2021_41_2_a17
ER  - 
%0 Journal Article
%A Desormeaux, Wyatt J.
%A Haynes, Teresa W.
%A Henning, Michael A.
%T Restrained Domination in Self-Complementary Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 633-645
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a17/
%G en
%F DMGT_2021_41_2_a17
Desormeaux, Wyatt J.; Haynes, Teresa W.; Henning, Michael A. Restrained Domination in Self-Complementary Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 633-645. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a17/