Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_2_a15, author = {Das, Angsuman}, title = {Triameter of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {601--616}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a15/} }
Das, Angsuman. Triameter of Graphs. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 601-616. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a15/
[1] G. Chartrand, D. Erwin and P. Zhang, A graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin. Appl. 43 (2005) 43–57.
[2] D. Cvetković and M. Petrić, A Table of connected graphs on six vertices, Discrete Math. 50 (1984) 37–49. doi:10.1016/0012-365X(84)90033-5
[3] P. Duchet and H. Meyniel, On Hadwiger's number and stability number, Ann. Discrete Math. 13 (1982) 71–74. doi:10.1016/S0304-0208(08)73549-7
[4] O. Favaron and D. Kratsch, Ratios of domination parameters, in: Advances in Graph Theory, V.R. Kulli, (Ed(s)), (Vishwa, Gulbarga, 1991) 173–182.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[6] S.T. Hedetniemi and R. Laskar, Connected domination in graphs, in: Graph Theory and Combinatorics, B. Bollobás (Ed(s)), (Academic Press, London 1984), 209–218.
[7] M.A. Henning and A. Yeo, A new lower bound for the total domination number in graphs proving a Graffiti.pc Conjecture, Discrete Appl. Math. 173 (2014) 45–52. doi:10.1016/j.dam.2014.03.013
[8] S.R. Kola and P. Panigrahi, A Lower bound for radio k-chromatic number of an arbitrary graph, Contrib. Discrete Math. 10 (2015) 45–56.
[9] M. Laurent, Graphic vertices of the metric polytope, Discrete Math. 151 (1996) 131–151. doi:10.1016/0012-365X(94)00091-V
[10] L. Saha and P. Panigrahi, Antipodal number of some powers of cycles, Discrete Math. 312 (2012) 1550–1557. doi:10.1016/j.disc.2011.10.032
[11] L. Saha and P. Panigrahi, A lower bound for radio k-chromatic number, Discrete Appl. Math. 192 (2015) 87–100. doi:10.1016/j.dam.2014.05.004
[12] U. Sarkar and A. Adhikari, On characterizing radio k-coloring problem by path covering problem, Discrete Math. 338 (2015) 615–620. doi:10.1016/j.disc.2014.11.014
[13] U. Sarkar and A. Adhikari, On relationship between Hamiltonian path and holes in L(3, 2, 1)-coloring of minimum span, Discrete Appl. Math. 222 (2017) 227–234. doi:10.1016/j.dam.2017.01.017
[14] D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001).
[15] List of small graphs. http://www.graphclasses.org/smallgraphs.html#nodes5 http://users.cecs.anu.edu.au/bdm/data/graphs.html
[16] SageMath. http://www.sagemath.org/