Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_2_a14, author = {Zubrilina, Nina}, title = {Asymptotic {Behavior} of the {Edge} {Metric} {Dimension} of the {Random} {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {589--599}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a14/} }
Zubrilina, Nina. Asymptotic Behavior of the Edge Metric Dimension of the Random Graph. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 589-599. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a14/
[1] B. Bollobás, D. Mitsche and P. Pralat, Metric dimension for random graphs, (2012). arXiv:1208.3801
[2] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl. 39 (2000) 19–28. doi:10.1016/S0898-1221(00)00126-7
[3] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113. doi:10.1016/S0166-218X(00)00198-0
[4] V. Filipović, A. Kartelj and J. Kratica, Edge metric dimension of some generalized Petersen graphs, Results Math. 74 (2019) Article 182.
[5] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
[6] S. Janson, New versions of Suen’s correlation inequality, Random Structures Algorithms 13 (1998) 467–483. doi:10.1002/(SICI)1098-2418(199810/12)13:3/4〈467::AID-RSA15〉3.0.CO;2-w
[7] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist. 3 (1993) 203–236. doi:10.1080/10543409308835060
[8] A. Kelenc, N. Tratnik and I.G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discrete Appl. Math. 251 (2018) 204–220. doi:10.1016/j.dam.2018.05.052
[9] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229. doi:10.1016/0166-218X(95)00106-2
[10] R.A. Melter and I. Tomescu, Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing 25 (1984) 113–121. doi:10.1016/0734-189X(84)90051-3
[11] J.W. Moon and L. Moser, A matrix reduction problem, Math. Comp. 20 (1966) 328–330. doi:10.1090/S0025-5718-66-99935-2
[12] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.
[13] N. Zubrilina, On the edge dimension of a graph, Discrete Math. 341 (2018) 2083–2088. doi:10.1016/j.disc.2018.04.010