Asymptotic Behavior of the Edge Metric Dimension of the Random Graph
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 589-599

Voir la notice de l'article provenant de la source Library of Science

Given a simple connected graph G(V,E), the edge metric dimension, denoted edim(G), is the least size of a set S ⊆ V that distinguishes every pair of edges of G, in the sense that the edges have pairwise different tuples of distances to the vertices of S. In this paper we prove that the edge metric dimension of the Erdős-Rényi random graph G(n, p) with constant p is given by edim(G(n,p))=(1+o(1))4 log n/log(1/q), where q = 1 − 2p(1 − p)^2(2 − p).
Keywords: random graph, edge dimension, Suen’s inequality
@article{DMGT_2021_41_2_a14,
     author = {Zubrilina, Nina},
     title = {Asymptotic {Behavior} of the {Edge} {Metric} {Dimension} of the {Random} {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {589--599},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a14/}
}
TY  - JOUR
AU  - Zubrilina, Nina
TI  - Asymptotic Behavior of the Edge Metric Dimension of the Random Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 589
EP  - 599
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a14/
LA  - en
ID  - DMGT_2021_41_2_a14
ER  - 
%0 Journal Article
%A Zubrilina, Nina
%T Asymptotic Behavior of the Edge Metric Dimension of the Random Graph
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 589-599
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a14/
%G en
%F DMGT_2021_41_2_a14
Zubrilina, Nina. Asymptotic Behavior of the Edge Metric Dimension of the Random Graph. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 589-599. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a14/