Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_2_a11, author = {Li, Hengzhe and Ma, Yingbin and Li, Xueliang}, title = {The {Vertex-Rainbow} {Connection} {Number} of {Some} {Graph} {Operations}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {513--530}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a11/} }
TY - JOUR AU - Li, Hengzhe AU - Ma, Yingbin AU - Li, Xueliang TI - The Vertex-Rainbow Connection Number of Some Graph Operations JO - Discussiones Mathematicae. Graph Theory PY - 2021 SP - 513 EP - 530 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a11/ LA - en ID - DMGT_2021_41_2_a11 ER -
Li, Hengzhe; Ma, Yingbin; Li, Xueliang. The Vertex-Rainbow Connection Number of Some Graph Operations. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 513-530. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a11/
[1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad and A. Ramaswamy, Rainbow connection number and radius, Graphs Combin. 30 (2014) 275–285. doi:10.1007/s00373-012-1267-7
[2] M. Basavaraju, L.S. Chandran, D. Rajendraprasad and A. Ramaswamy, Rainbow connection number of graph power and graph products, Graphs Combin. 30 (2014) 1363–1382. doi:10.1007/s00373-013-1355-3
[3] J.P. Bode and H. Harborth, The minimum size of k-rainbow connected graphs of given order, Discrete Math. 313 (2013) 1924–1928. doi:10.1016/j.disc.2012.07.023
[4] J.A. Bondy and U.S.R. Murty, Graph Theory (New York, Springer, 2008).
[5] Y. Caro, A. Lev, Y. Roditty, Zs. Tuza and R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) #R57.
[6] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2011) 330–347. doi:10.1007/s10878-009-9250-9
[7] L.S. Chandran, A. Das, D. Rajendraprasad and N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71 (2012) 206–218. doi:10.1002/jgt.20643
[8] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
[9] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75–81. doi:10.1002/net.20296
[10] L. Chen, X. Li and H. Lian, Further hardness results on the rainbow vertex-connection number of graphs, Theoret. Comput. Sci. 481 (2013) 18–23. doi:10.1016/j.tcs.2013.02.012
[11] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531–4535. doi:10.1016/j.tcs.2011.04.032
[12] J. Ekstein, P. Holub, T. Kaiser, M. Koch, S. Matos Camacho, Z. Ryjáček and I. Schiermeyer, The rainbow connection number of 2 -connected graphs, Discrete Math. 313 (2013) 1884–1892. doi:10.1016/j.disc.2012.04.022
[13] T. Gologranc, G. Mekiš and I. Peterin, Rainbow connection and graph products, Graphs Combin. 30 (2014) 591–607. doi:10.1007/s00373-013-1295-y
[14] X. Huang, H. Li, X. Li and Y. Sun, Oriented diameter and rainbow connection number of a graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 51–60.
[15] X. Huang, X. Li, Y. Shi, J. Yue and Y. Zhao, Rainbow connections for outerplanar graphs with diameter 2 and 3, Appl. Math. Comput. 242 (2014) 277–280. doi:10.1016/j.amc.2014.05.066
[16] I. Gutman, Distance in Thorny graphs, Publ. Inst. Math. (Beograd) (N.S.) 63 (1998) 31–36.
[17] S. Klavžar and G. Mekiš, On the rainbow connection of Cartesian products and their subgraphs, Discuss. Math. Graph Theory 32 (2012) 783–793. doi:10.7151/dmgt.1644
[18] M. Knor, L’. Niepel and L’. Šoltés, Centers in line graphs, Math. Slovaca 43 (1993) 11–20.
[19] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191. doi:10.1002/jgt.20418
[20] H. Li, X. Li and S. Liu, Rainbow connection of graphs with diameter 2, Discrete Math. 312 (2012) 1453–1457. doi:10.1016/j.disc.2012.01.009
[21] H. Li, X. Li, Y. Sun and Y. Zhao, Note on minimally d-rainbow connected graphs, Graphs Combin. 30 (2014) 949–955. doi:10.1007/s00373-013-1309-9
[22] H. Li, X. Li and Y. Sun, Rainbow connection number of graphs with diameter 3, Discuss. Math. Graph Theory 37 (2017) 141–154. doi:10.7151/dmgt.1920
[23] H. Li and Y. Ma, Rainbow connection number and graph operations, Discrete Appl. Math. 230 (2017) 91–99. doi:10.1016/j.dam.2017.06.004
[24] X. Li and S. Liu, Tight upper bound of the rainbow vertex-connection number for 2-connected graphs, Discrete Appl. Math. 173 (2014) 62–69. doi:10.1016/j.dam.2014.04.002
[25] X. Li, S. Liu, L.S. Chandran, R. Mathew and D. Rajendraprasad, Rainbow connection number and connecivity, Electron. J. Combin. 19 (2012) #P20.
[26] X. Li and Y. Shi, Rainbow connection in 3-connected graphs, Graphs Combin. 29 (2013) 1471–1475. doi:10.1007/s00373-012-1204-9
[27] X. Li and Y. Sun, Note on the rainbow k-connectivity of regular complete bipartite graphs, Ars Combin. 101 (2011) 513–518.
[28] X. Li and Y. Sun, Rainbow Connections of Graphs (New York, Springer, 2012). doi:10.1007/978-1-4614-3119-0
[29] H. Liu, Â. Mestre and T. Sousa, Rainbow vertex k-connection in graphs, Discrete Appl. Math. 161 (2013) 2549–2555. doi:10.1016/j.dam.2013.04.025
[30] A. Lo, A note on the minimum size of k-rainbow-connected graphs, Discrete Math. 331 (2014) 20–21. doi:10.1016/j.disc.2014.04.024
[31] Z. Lu and Y. Ma, Graphs with vertex rainbow connection number two, Sci. China Math. 58 (2015) 1803–1810. doi:10.1007/s11425-014-4905-0
[32] Y. Mao, F. Yanling, Z. Wang and C. Ye, Rainbow vertex-connection and graph products, Int. J. Comput. Math. 93 (2016) 1078–1092. doi:10.1080/00207160.2015.1047356
[33] I. Schiermeyer, On minimally rainbow k-connected graphs, Discrete Appl. Math. 161 (2013) 702–705. doi:10.1016/j.dam.2011.05.001