Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_2_a10, author = {M\'a\v{c}ajov\'a, Edita and \v{S}koviera, Martin}, title = {Critical and {Flow-Critical} {Snarks} {Coincide}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {503--511}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a10/} }
Máčajová, Edita; Škoviera, Martin. Critical and Flow-Critical Snarks Coincide. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 503-511. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a10/
[1] G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of Graphs: a database of interesting graphs, Discrete Appl. Math. 161 (2013) 311–314. doi:10.1016/j.dam.2012.07.018
[2] G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013) 468–488. doi:10.1016/j.jctb.2013.05.001
[3] G. Brinkmann and E. Steffen, Snarks and reducibility, Ars Combin. 50 (1998) 292–296.
[4] P.J. Cameron, A.G. Chetwynd and J.J. Watkins, Decomposition of snarks, J. Graph Theory 11 (1987) 13–19. doi:10.1002/jgt.3190110104
[5] M. Chladný and M. Škoviera, Factorisation of snarks, Electron. J. Combin. 17 (2010) #R32.
[6] A.B. Carneiro, C.N. da Silva and B. McKay, A faster test for 4-criticality in snarks, Electron. Notes Disrete Math. 50 (2015) 193–198. doi:10.1016/j.endm.2015.07.033
[7] M. DeVos, J. Nešetřil and A. Raspaud, On edge-maps whose inverse preserves flows or tensions, in: Graph Theory in Paris, J.A. Bondy et al. (Ed(s)), (Trends in Mathematics, Birkhäuser, Basel, 2006) 109–138.
[8] C.N. da Silva and C.L. Lucchesi, Flow-critical graphs, Electron. Notes Discrete Math. 30 (2008) 165–170. doi:10.1016/j.endm.2008.01.029
[9] C.N. da Silva, L. Pescia and C.L. Lucchesi, Snarks and flow-critical graphs, Electron. Notes Discrete Math. 44 (2013) 299–305. doi:10.1016/j.endm.2013.10.047
[10] B.L. de Freitas, C.N. da Silva and C.L. Lucchesi, Hypohamiltonian snarks have a 5-flow, Electron. Notes Discrete Math. 50 (2015) 199–204. doi:10.1016/j.endm.2015.07.034
[11] R. Diestel, Graph Theory, 5th Edition (Springer, Berlin, 2016).
[12] M.A. Fiol, G. Mazzuoccolo and E. Steffen, Measures of edge-uncolorability of cubic graphs, Electron. J. Combin. 25 (2017) #P4.54.
[13] S. Grünewald and E. Steffen, Cyclically 5-edge-connected non-bicritical critical snarks, Discuss. Math. Graph Theory 19 (1999) 5–11. doi:10.7151/dmgt.1081
[14] R. Nedela and M. Škoviera, Decompositions and reductions of snarks, J. Graph Theory 22 (1996) 253–279. doi:10.1002/(SICI)1097-0118(199607)22:3〈253::AID-JGT6〉3.0.CO;2-L
[15] R. Šámal, Cycle-continuous mappings—order structure, J. Graph Theory 85 (2017) 56–73. doi:10.1002/jgt.22047
[16] E. Steffen, Classifications and characterizations of snarks, Discrete Math. 188 (1998) 183–203. doi:10.1016/S0012-365X(97)00255-0
[17] E. Steffen, Non-bicritical critical snarks, Graphs Combin. 15 (1999) 473–480. doi:10.1007/s003730050054
[18] E. Steffen, On bicritical snarks, Math. Slovaca 51 (2001) 141–150.