Critical and Flow-Critical Snarks Coincide
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 503-511.

Voir la notice de l'article provenant de la source Library of Science

Over the past twenty years, critical and bicritical snarks have been appearing in the literature in various forms and in different contexts. Two main variants of criticality of snarks have been studied: criticality with respect to the non-existence of a 3-edge-colouring and criticality with respect to the non-existence of a nowhere-zero 4-flow. In this paper we show that these two kinds of criticality coincide, thereby completing previous partial results of de Freitas et al. [Electron. Notes Discrete Math. 50 (2015) 199–204] and Fiol et al. [Electron. J. Combin. 25 (2017) #P4.54].
Keywords: nowhere-zero flow, edge-colouring, cubic graph, snark
@article{DMGT_2021_41_2_a10,
     author = {M\'a\v{c}ajov\'a, Edita and \v{S}koviera, Martin},
     title = {Critical and {Flow-Critical} {Snarks} {Coincide}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {503--511},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a10/}
}
TY  - JOUR
AU  - Máčajová, Edita
AU  - Škoviera, Martin
TI  - Critical and Flow-Critical Snarks Coincide
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 503
EP  - 511
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a10/
LA  - en
ID  - DMGT_2021_41_2_a10
ER  - 
%0 Journal Article
%A Máčajová, Edita
%A Škoviera, Martin
%T Critical and Flow-Critical Snarks Coincide
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 503-511
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a10/
%G en
%F DMGT_2021_41_2_a10
Máčajová, Edita; Škoviera, Martin. Critical and Flow-Critical Snarks Coincide. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 2, pp. 503-511. http://geodesic.mathdoc.fr/item/DMGT_2021_41_2_a10/

[1] G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of Graphs: a database of interesting graphs, Discrete Appl. Math. 161 (2013) 311–314. doi:10.1016/j.dam.2012.07.018

[2] G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013) 468–488. doi:10.1016/j.jctb.2013.05.001

[3] G. Brinkmann and E. Steffen, Snarks and reducibility, Ars Combin. 50 (1998) 292–296.

[4] P.J. Cameron, A.G. Chetwynd and J.J. Watkins, Decomposition of snarks, J. Graph Theory 11 (1987) 13–19. doi:10.1002/jgt.3190110104

[5] M. Chladný and M. Škoviera, Factorisation of snarks, Electron. J. Combin. 17 (2010) #R32.

[6] A.B. Carneiro, C.N. da Silva and B. McKay, A faster test for 4-criticality in snarks, Electron. Notes Disrete Math. 50 (2015) 193–198. doi:10.1016/j.endm.2015.07.033

[7] M. DeVos, J. Nešetřil and A. Raspaud, On edge-maps whose inverse preserves flows or tensions, in: Graph Theory in Paris, J.A. Bondy et al. (Ed(s)), (Trends in Mathematics, Birkhäuser, Basel, 2006) 109–138.

[8] C.N. da Silva and C.L. Lucchesi, Flow-critical graphs, Electron. Notes Discrete Math. 30 (2008) 165–170. doi:10.1016/j.endm.2008.01.029

[9] C.N. da Silva, L. Pescia and C.L. Lucchesi, Snarks and flow-critical graphs, Electron. Notes Discrete Math. 44 (2013) 299–305. doi:10.1016/j.endm.2013.10.047

[10] B.L. de Freitas, C.N. da Silva and C.L. Lucchesi, Hypohamiltonian snarks have a 5-flow, Electron. Notes Discrete Math. 50 (2015) 199–204. doi:10.1016/j.endm.2015.07.034

[11] R. Diestel, Graph Theory, 5th Edition (Springer, Berlin, 2016).

[12] M.A. Fiol, G. Mazzuoccolo and E. Steffen, Measures of edge-uncolorability of cubic graphs, Electron. J. Combin. 25 (2017) #P4.54.

[13] S. Grünewald and E. Steffen, Cyclically 5-edge-connected non-bicritical critical snarks, Discuss. Math. Graph Theory 19 (1999) 5–11. doi:10.7151/dmgt.1081

[14] R. Nedela and M. Škoviera, Decompositions and reductions of snarks, J. Graph Theory 22 (1996) 253–279. doi:10.1002/(SICI)1097-0118(199607)22:3〈253::AID-JGT6〉3.0.CO;2-L

[15] R. Šámal, Cycle-continuous mappings—order structure, J. Graph Theory 85 (2017) 56–73. doi:10.1002/jgt.22047

[16] E. Steffen, Classifications and characterizations of snarks, Discrete Math. 188 (1998) 183–203. doi:10.1016/S0012-365X(97)00255-0

[17] E. Steffen, Non-bicritical critical snarks, Graphs Combin. 15 (1999) 473–480. doi:10.1007/s003730050054

[18] E. Steffen, On bicritical snarks, Math. Slovaca 51 (2001) 141–150.