Large Contractible Subgraphs of a 3-Connected Graph
Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 83-101

Voir la notice de l'article provenant de la source Library of Science

Let m ≥ 5 be a positive integer and let G be a 3-connected graph on at least 2m + 1 vertices. We prove that G has a contractible set W such that m ≤ |W| ≤ 2m − 4. (Recall that a set W ⊂ V (G) of a 3-connected graph G is contractible if the graph G(W) is connected and the graph G − W is 2-connected.) A particular case for m = 4 is that any 3-connected graph on at least 11 vertices has a contractible set of 5 or 6 vertices.
Keywords: connectivity, 3-connected graph, contractible subgraph
@article{DMGT_2021_41_1_a5,
     author = {Karpov, Dmitri V.},
     title = {Large {Contractible} {Subgraphs} of a {3-Connected} {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {83--101},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a5/}
}
TY  - JOUR
AU  - Karpov, Dmitri V.
TI  - Large Contractible Subgraphs of a 3-Connected Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2021
SP  - 83
EP  - 101
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a5/
LA  - en
ID  - DMGT_2021_41_1_a5
ER  - 
%0 Journal Article
%A Karpov, Dmitri V.
%T Large Contractible Subgraphs of a 3-Connected Graph
%J Discussiones Mathematicae. Graph Theory
%D 2021
%P 83-101
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a5/
%G en
%F DMGT_2021_41_1_a5
Karpov, Dmitri V. Large Contractible Subgraphs of a 3-Connected Graph. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 83-101. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a5/