Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2021_41_1_a5, author = {Karpov, Dmitri V.}, title = {Large {Contractible} {Subgraphs} of a {3-Connected} {Graph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {83--101}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a5/} }
Karpov, Dmitri V. Large Contractible Subgraphs of a 3-Connected Graph. Discussiones Mathematicae. Graph Theory, Tome 41 (2021) no. 1, pp. 83-101. http://geodesic.mathdoc.fr/item/DMGT_2021_41_1_a5/
[1] W.T. Tutte, Connectivity in Graphs (Univ. Toronto Press, 1966).
[2] W. Hohberg, The decomposition of graphs into k-connected components, Discrete Math. 109 (1992) 133–145. doi: 10.1016/0012-365X(92)90284-M
[3] W. Mader, On vertices of degree n in minimally n-connected graphs and digraphs, Combinatorics, Paul Erdős is Eighty 2 (1996) 423–449.
[4] W. McCuaig and K. Ota, Contractible triples in 3- connected graphs, J. Comb. Theory Ser. B 60 (1994) 308–314. doi: 10.1006/jctb.1994.1022
[5] M. Kriesell, Contractible subgraphs in 3- connected graphs, J. Comb. Theory Ser. B 80 (2000) 32–48. doi: 10.1006/jctb.2000.1960
[6] M. Kriesell, On small contractible subgraphs in 3- connected graphs of small average degree, Graphs Combin. 23 (2007) 545–557. doi: 10.1007/s00373-007-0749-5
[7] F. Harary, Graph Theory (Addison-Wesley, 1969). doi: 10.21236/AD0705364
[8] D.V. Karpov and A.V. Pastor, On the structure of a k-connected graph, J. Math. Sci. 113 (2003) 584–597. doi: 10.1023/A:1021146226285
[9] D.V. Karpov and A.V. Pastor, The structure of a decomposition of a triconnected graph, J. Math. Sci. 184 (2012) 601–628. doi: 10.1007/s10958-012-0885-1
[10] D.V. Karpov, Blocks in k-connected graphs, J. Math. Sci. 126 (2005) 1167–1181. doi: 10.1007/s10958-005-0084-4
[11] D.V. Karpov, Cutsets in a k-connected graph, J. Math. Sci. 145 (2007) 4953–4966. doi: 10.1007/s10958-007-0330-z
[12] D.V. Karpov, The decomposition tree of a biconnected graph, J. Math. Sci. 204 (2015) 232–243. doi: 10.1007/s10958-014-2198-z
[13] D.V. Karpov, Minimal biconnected graphs, J. Math. Sci. 204 (2015) 244–257. doi: 10.1007/s10958-014-2199-y